Звуковой сигнал для ардуино

Звук на Arduino

В этой статье я рассмотрю примеры работы со звуков на контроллере Arduino

Данный пример я планирую использовать в системе звукового оповещения домашней метеостанции, чтобы своевременно реагировать на критические значения измеряемых параметров.

Подключение пьезоизлучателя к Arduino

На самом деле подключение очень простое:

  • 1 вывод пьезоизлучателя подключаем к 9 дискретному пину Arduino
  • 2 вывод пьезоизлучателя подключаем к GND Arduino

Генерация звуков на Arduino

Для генерации звуков на Arduino существует функция tone()

Функция tone()

Генерирует сигнал прямоугольной формы с заданной частотой. Длительность может быть задана параметром. Без указания длительности сигнал генерируется пока не будет вызвана функция noTone(). К порту Arduino может быть подключен к пьезо или другой высокоомный динамик для воспроизведения сигнала. Одновременно может воспроизводиться только один сигнал.

Синтаксис функции tone()

  • tone(pin, частота)
  • tone(pin, частота, длительность)

Пример использования функции tone()

const int SoundPin = 9; // Пин подключения пьезоизлучателя – 9 дискретный
int DelaySound = 1000; // Пауза 1 секунда

void loop()
<
// Пример использования tone()
//tone(pin, частота)
tone(SoundPin, 1915); // Воспроизводим сигнал с частотой 1915 Гц
delay(DelaySound); // Пауза 1 секунда (1000 миллисекунд – значение переменной DelaySound ) – длительность воспроизведения сигнала

tone(SoundPin, 1700);
delay(DelaySound);

tone(SoundPin, 1519);
delay(DelaySound);

tone(SoundPin, 1432);
delay(DelaySound);

tone(SoundPin, 1275);
delay(DelaySound);

tone(SoundPin, 1136);
delay(DelaySound);

tone(SoundPin, 1014);
delay(DelaySound);

Источник

Как подключить пьезоизлучатель (пьезопищалку) к Arduino

Генерировать звуки с помощью Ардуино можно разными способами. Самый простой из них – подключить к плате пьезоизлучатель (или, как его ещё называют, «пьезопищалку»). Но как всегда, есть тут свои нюансы. В общем, давайте подключим к Arduino пьезопищалку и будем разбираться.

Инструкция по подключению пьезоизлучателя к Arduino

1 Схема подключения пьезоизлучателяк Arduino

Пьезоизлучатель, или пьезоэлектрический излучатель, или «пьезопищалка» – это электроакустическое устройство воспроизведения звука, использующие обратный пьезоэлектрический эффект. Принцип действия его основан на том, что под действием электрического поля возникает механическое движение мембраны, которое и вызывает слышимые нами звуковые волны. Обычно такие излучатели звука устанавливают в бытовую электронную аппаратуру в качестве звуковых сигнализаторов, в корпуса настольных персональных компьютеров, в телефоны, в игрушки, в громкоговорители и много куда ещё.

Пьезоизлучатель имеет 2 вывода, причём полярность имеет значение. Поэтому чёрный вывод подключаем к земле (GND), а красный – к любому цифровому пину с функцией ШИМ (PWM ). В данном примере положительный вывод излучателя подключён к выводу «D3».

Схема подключения пьезоизлучателя к Arduino и схема, собранная на макетной плате

2 Извлекаем звук из пьезоизлучателяс помощью функции analogWrite()

Пьезопищалку можно задействовать разными способами. Самый простой из них – это использовать функцию analogWrite(). Пример скетча – во врезке. Данный скетч попеременно включает и выключает звук с частотой 1 раз в 2 секунды.

Задаём номер пина, определяем его как выход. Функция analogWrite() принимает в качестве аргументов номер вывода и уровень, который может быть от 0 до 255, т.к. ШИМ -выводы Ардуино имеют 8-битный ЦАП . Это значение будет изменять громкость пьезопищалки в небольших пределах. Чтобы выключить пьезопищалку, нужно послать в порт значение «0».

Используя функцию analogWrite(), нельзя изменять тональность звука, к сожалению. Пьезоизлучатель всегда будет звучать на частоте примерно 980 Гц, что соответствует частоте работы выводов с широтно-импульсной модуляцией сигнала (ШИМ ) на платах Arduino UNO и подобных.

3 Извлекаем звук из пьезоизлучателяс помощью функции tone()

Но частоту звучания можно менять по-другому. Для этого извлечём звук из пьезоизлучателя посредством встроенной функции tone(). Пример простейшего скетча приведён на врезке.

Функция tone() принимает в качестве аргументов номер вывода Arduino и звуковую частоту. Нижний предел частоты – 31 Гц, верхний предел ограничен параметрами пьезоизлучателя и человеческого слуха. Чтобы выключить звук, посылаем в порт команду noTone().

А вот так будет выглядеть временная диаграмма сигнала, который генерирует функция tone(). Видно, что каждые 100 мс частота увеличивается, что мы и слышим:

Временная диаграмма сигнала функции tone()

Как видите, с помощью пьезоизлучателя из Ардуино можно извлекать звуки. Можно даже написать несложную музыкальную композицию, задав ноты соответствующими частотами, а также определив длительность звучания каждой ноты посредством функции delay().

Обратите внимание, что если к Ардуино подключены несколько пьезоизлучателей, то единовременно будет работать только один. Чтобы включить излучатель на другом выводе, нужно прервать звук на текущем, вызвав функцию noTone().

Важный момент: функция tone() накладывается на ШИМ сигнал на «3» и «11» выводах Arduino. Т.е., вызванная, например, для пина «5», функция tone() может мешать работе выводов «3» и «11». Имейте это в виду, когда будете проектировать свои устройства.

Источник

Звук в ардуино. Урок 7. Ардуино

Генерировать звук в Ардуино можно многими способами. Самый простой — это использовать функцию tone(). Поэтому, прежде всего, посмотрим как работает эта функция.

Генерируем звук на ардуино

Также существуют дополнительные платы, которые можно подключить к Ардуино с помощью перемычек. Но о них мы поговорим в дугой раз.

Сейчас посмотрим, как можно запрограммировать Ардуино для вывода звука. Для этого просто используем небольшой динамик.

В предыдущем уроке мы научились использовать последовательный порт для ввода информации и управления подключенным оборудованием. Сейчас попробуем использовать его для вывода звука. Так что, если вы забыли или пропустили предыдущий урок, пожалуйста, посмотрите его.

Для выполнения этого урока нам понадобятся

  • Ардуино Uno
  • Макетная плата
  • Перемычки
  • 1 резистор номиналом 150 Ом
  • Потенциометр 10 кОм
  • Динамик 8 Ом
  • Кабель USB

Что такое звук

Во-первых, несколько слов о звуке. Что такое звук, какими свойствами он обладает, как люди воспринимают звук?

Прежде всего, мы знаем, что звук распространяется по воздуху в виде волны. Работа звуковых колонок, удар в барабан или колокол создают вибрацию воздуха. Таким образом, частицы воздуха за счет колебаний передают энергию все дальше и дальше. В результате волна давления передается от источника к вашей барабанной перепонке через реакцию вибрирующих частиц.

Звук в ардуино управляется двумя свойствами этих частиц. Частотой и амплитудой. Частота — это скорость вибрации, а амплитуда — это размах колебаний.

В физическом смысле звуки с большой амплитудой громче, чем с малой. Тон высокочастотных звуков выше, а низкочастотных, как видим на графике, — ниже.

Частота и амплитуда звуковой волны

Как работает динамик

В предыдущих уроках мы рассматривали как работают электродвигатели. Двигатели используют электромагниты для превращения электрической энергии в механическую.

Динамики работают так же для создания звука.

Схема громкоговорителя

Перед постоянным магнитом размещена звуковая катушка. Когда вы подаете на нее электрический сигнал, переменный ток создает магнитное поле, звуковая катушка перемещает диффузор вверх и вниз. Из-за вибрации диффузора из динамика раздается звук.

Функция tone()

Для работы со звуком в Ардуино предусмотрена функция tone(). Она создает меандр с заданной частотой и выводит его на выбранный контакт.

Функция tone() взаимодействует с одним из аппаратных таймеров контроллера ATmega, так что ее можно вызвать и продолжать работать с Ардуино, а звук будет играть в фоновом режиме.

Программа и схема

На этом теоретическая часть закончена. Так что, давайте соберем небольшую схему и попробуем запрограммировать воспроизведение звука.

Сегодня мы хотим передавать на динамик данные из последовательного порта. А также, играть уже готовую мелодию.

Принципиальная схема подключения динамика к ардуино

Подключим динамик к ардуино последовательно с резистором и с потенциометром, таким образом мы сможем регулировать громкость звука.

Проверить работоспособность схемы очень просто. Используем функцию tone() и напишем простую программу чтобы продемонстрировать ее работу.

Поскольку функция tone() принимает несколько параметров, мы можем указать длительность сигнала. Поэтому будем использовать оператор setup() а не loop().

В результате выполнения этого кода, мы услышим высокий звук длительностью 1 секунду.

Ардуино и динамик

Теперь, если мы хотим использовать последовательный порт и принимать команды из него, используем функцию Serial.parseInt(). Для этого, будем считывать число из порта и передавать его как частоту в функцию tone().

Не забудем ограничить максимальные и минимальные значения, а так же включить последовательный порт в функции setup().

Полный текст программы

Заключение

Сегодня мы рассмотрели еще один аспект работы с Ардуино. А именно звук в Ардуино. Более того, в будущем мы будем улучшать схему и программу этого урока. А в следующий раз подключим к схеме несколько кнопок и попробуем сыграть настоящую мелодию.

Источник

Подключение пьезопищалки и генерация звука. Функции tone() и noTone()

Сегодня мы поговорим о том, как воспроизводить мелодии и отдельные звуки с помощью платы Arduino, применяя функции tone() и noTone().

Элемент, который используется для примера в данной статье, называется пьезопищалка, он же зуммер, он же пьезодинамик.

Ранее мы научились подключать к плате светодиод и познакомились с функциями digitalWrite() и delay(). С их помощью можно подавать напряжение на пины контроллера и приостанавливать выполнение программы. Эти функции здесь тоже пригодятся.

Для чего нам звуки

Любой робот или другое электронное устройство становятся проще в использовании, если имеют возможность сигнализировать о своем состоянии. Для индикации могут использоваться световые или акустические элементы.

К примеру, известный робот R2-D2 использовал оба типа обратной связи — он мигал и издавал странные звуки.

Для начала разберемся, как работает пьезопищалка. Очевидно, что она должна издавать звук. Но что это и как возникает?

Что такое звук

Звук — это колебания воздуха, которые волнами расходятся от своего источника. Волны эти не видны, однако воздействуют на барабанные перепонки, вызывая в них механические колебания, которые мозг человека умеет преобразовывать в звуки.

Получается, чтобы появились колебания и возник аудиосигнал, пьезопищалка должна двигаться и воздействовать на воздух.

Так оно и есть. Пьезодинамик может совершать маленькие, незаметные для глаз движения под воздействием электричества. Мы их не увидим, однако воздух колебать они могут, а значит будет издаваться звук.

Имея в своем распоряжении Arduino, мы можем использовать электричество и подавать напряжение на пищалку по определенной программе.

Как извлечь звук из пьезопищалки

Если подключить пьезопищалку напрямую к батарейному отсеку и подать постоянный ток на пластину, то ничего не произойдёт. Попробуем подключить ее к какому-нибудь D-пину и GND нашего Arduino.

Но сначала нужно загрузить в плату программу, которая будет управлять напряжением на этом пине:

Итак, код залит в плату. Присоединяем новый элемент.

Рис. 2. Подключение пьезопищалки к плате Arduino

Настройка звучания сигнала

Если все сделано, как описано выше, то должны быть слышны щелчки.

Мы установили чередование подачи и отключения напряжения с длительностью в 500 тысячных долей секунды через параметр функции delay(). Поэтому звук длится полсекунды, после чего на такой же отрезок времени затихает.

Чтобы колебания происходили быстрее, то есть чаще, нужно уменьшить время задержки.

Поэкспериментируйте с разными значениями для функции delay(). Попробуйте выставить в программе вместо 500 числа 10, 5, 1.

Чем чаще происходят колебания, тем выше звук, который мы слышим. Получается, если увеличивать частоту, звук будет превращаться в тонкий писк. А если уменьшать — в гул или гудение.

Кстати, именно поэтому мы слышим писк, когда рядом летает комар. Он часто-часто машет своими крылышками. В противовес ему — полет шмеля, который гораздо тяжелее и медленнее, поэтому он как бы “гудит”.

Как рождается мелодия

Для вопроизведения последовательности звуков, то есть мелодии, поможет функция tone().

Ее параметры дают возможность управлять направлением сигнала (какой из пинов на контроллере должен быть задействован) и частотой колебаний звука.

Запись функции выглядит так:

Номер пина здесь — это тот пин Arduino, куда подключена пьезопищалка, из которой хотим извлечь звук. А частота — требуемое значение частоты в герцах (положительное целое число).

Рис. 3. Схема подключения пьезопищалки к контроллеру

Пример программы с функцией tone():

При загрузке и запуске данного кода можно получить звук, если к указанному пину подключена пьезопищалка или другое акустическое устройство.

Серия из команд с различными частотами для одного пина позволит нашему Arduino сыграть мелодию, последовательно сменяя один тон на другой.

Одним из применений может стать установка музыкального приветствия на запуск робота:

Горшочек, не вари!

Функция tone() по умолчанию воспроизводит звук нужной частоты без конечного срока, то есть бесконечно. Чтобы прервать его, требуется использовать противоположную по значению операцию — noTone().

У этой функции лишь один параметр — указание нужного пина.

Если на выбранном пине воспроизводится звук, он будет приостановлен. Если же генерации сигнала там не было, то функция ничего не сделает, и программа пойдет дальше.

С небольшими изменениями предыдущий пример превращается в код для мелодии приветствия нашего робота:

Обратите внимание, что при использовании нескольких пьезопищалок нужно сначала подавать noTone() на пин, где уже были активированы колебания, и только потом вызывать tone() на другой пин.

Источник

Adblock
detector