Wifi для ардуино esp 01 модуль

Модуль Wi-Fi ESP8266 (ESP-01): подключение, прошивка и распиновка

Модуль ESP-01 с чипом ESP8266 предназначен для связи устройства с беспроводными сетями по WiFi.

Видеообзор

Общие сведения

ESP-01 — плата-модуль WiFi на базе популярного чипсета ESP8266EX . На борту платы находится микросхема Flash-памяти объёмом 2 МБ, чип ESP8266EX, кварцевый резонатор, два индикаторных светодиода и миниатюрная антенна из дорожки на верхнем слое печатной платы в виде змейки. Flash-память необходима для хранения программного обеспечения. При каждом включении питания, ПО автоматически загружается в чип ESP8266EX.

По умолчанию модуль настроен на работу через «AT-команды». Управляющая плата посылает команды — Wi-Fi модуль выполняет соответствующую операцию.

Но внутри чипа ESP8266 прячется целый микроконтроллер, который является самодостаточным устройством. Прошивать модуль можно на разных языках программирования. Но обо всё по порядку.

Работа с AT командами

Подключение и настройка

В стандартной прошивке Wi-Fi модуль общается с управляющей платой через «AT-команды» по протоколу UART.

На всех платах Iskra и Arduino присутствует хотя бы один аппаратный UART — HardwareSerial. Если же по каким то причинам он занят другим устройством, можно воспользоваться программным UART — SoftwareSerial.

HardwareSerial

На управляющей плате Iskra JS и платах Arduino с микроконтроллером ATmega32U4 / ATSAMD21G18 данные по USB и общение через пины 0 и 1 осуществляется через два раздельных UART . Это даёт возможность подключить Wi-Fi модуль к аппаратному UART на пинах 0 и 1 .

Список поддерживаемых плат:

Для примера подключим модуль Wi-Fi к платформе Iskra Neo.

Прошейте управляющую платформу кодом ниже.

Код прошивки

SoftwareSerial

Некоторые платы Arduino, например Uno, прошиваются через пины 0 и 1 . Это означает невозможность использовать одновременно прошивку/отладку по USB и общение с Wi-Fi модулем. Решение проблемы — программный UART . Подключите пины TX и RX ESP-модуля к другим контактам управляющей платы и используйте библиотеку SoftwareSerial.

Для примера подключим управляющие пины Wi-Fi модуля TX и RX — на 8 и 9 контакты управляющей платы. Прошейте управляющую платформу кодом ниже.

Код прошивки

HardwareSerial Mega

На платах форм-фактора Arduino Mega 2560 аппаратный UART, который отвечает за передачу данных через пины 1 и 0 , отвечает также за передачу по USB. Это означает невозможность использовать одновременно UART для коммуникации с Wi-Fi модулем и отладки по USB.

Но на платах такого форм-фактора есть ещё дополнительно три аппаратных UART:

Список поддерживаемых плат:

Подключите Wi-Fi модуль к объекту Serial1 на пины 18 и 19 на примере платы Mega 2560 Прошейте управляющую платформу кодом ниже.

Код прошивки

Примеры работы

Рассмотрим несколько примеров по работе с «AT-командами»

Тестовая команда «AT»

Откройте монитор порта. Настройте скорость соединения — 9600 бод. Конец строки — NL & CR . Введите команду AT и нажмите «Отправить». Это — базовая команда для проверки работы Wi-Fi модуля. В ответ получим «OK»: Если ответа нет или появляются непонятные символы — проверьте правильность подключения и настройки скорости обмена данными.

Настройка режима работы

Wi-Fi модуль умеет работать в трёх режимах:

Переведём чип в смешанный режим командой:

После установки модуль должен ответить «OK»:

В отличии от аппаратного UART (HardwareSerial), за работу программного UART (SoftwareSerial) отвечает микроконтроллер, который назначает другие пины в режим работы RX и TX , соответственно и данные которые приходят от Wi-Fi модуля обрабатывает сам микроконтроллер во время программы. По умолчанию скорость общения Troyka Wi-Fi равна 115200 , что значительно выше чем позволяет библиотека SoftwareSerial. В итоге часть информации которая приходит с Wi-Fi модуля будет утеряна. Если вы используете плату с HardwareSerial подключением модуля можете пропустить пункт настройки скорости и сразу перейти к дальнейшей работе с модулем.

AT установка скорости общения

Для корректной работы с большими объемами необходимо понизить скорость соединения модуля и микроконтроллера. Для этого используйте «AT-команду»:

После проделанной операции, измените скорость программного UART в скетче программы и прошейте плату.

По итогу программный UART успеет обработать каждый пришедший байт с Wi-Fi модуля.

AT сканирование WI-FI сетей

Откройте Serial-порт и отправьте на модуль «AT-команду» для сканирования всех доступных Wi-Fi сетей:

При наличии доступных WI-FI сетей в ответ получим сообщение:

Для продолжение работы используйте перечень «AT-команд»

Wi-Fi модуль как самостоятельный контроллер

ESP-01 (ESP8266) — очень умный модуль. Внутри чипа прячется целый микроконтроллер, который можно программировать на языке C++ через Arduino IDE и JavaScript через Espruino Web IDE .

Настройка железа

Ввиду отсутствия у платформы ESP-01 собственного USB-порта, понижающего преобразователя и отсутствия толерантности к 5 вольтам, подключите её к компьютеру, используя один из перечисленных способов:

Схема через Arduino Uno

Для сборки программатора понадобится:

Необходимо каждый раз выполнять перед прошивкой модуля.

Схема через USB-Serial адаптер

Для сборки программатора понадобится:

Необходимо каждый раз выполнять перед прошивкой модуля.

Программирование на C++

После выполненных действий модуль ESP-01 готов к программированию через Arduino IDE.

Подробности о функциях и методах работы ESP-01 (ESP8266) на языке C++ читайте на ESP8266 Arduino Cores.

Программирование на JavaScript

После выполненных действий модуль ESP-01 готов к программированию через Espruino Web IDE.

Подробнее о функциях и методах работы ESP8266 на языке JavaScript читайте на Espruino.

Восстановление стандартной АТ-прошивки

После программирования платформы в режиме самостоятельного контроллера может понадобиться восстановить на модуле стандартную AT-прошивку. Для этого необходимо воспользоваться утилитой Flash Download Tool.

Элементы платы

Чип ESP8266EX

Чип ESP8266 — выполнен по технологии SoC (англ. System-on-a-Chip — система на кристалле). В основе кристалла входит процессор семейства Xtensa — 32-х битный Tensilica L106 с частой 80 МГц с ультранизким энергопотреблением, радиочастотный трансивер с физическим уровнем WiFi IEEE 802.11 b/g/ и блоки памяти SRAM. Мощности процессорного ядра хватает для работы сложных пользовательских приложений и цифровой сигнальной обработки.

Программное приложение пользователя должно храниться на внешней микросхеме Flash-памяти и загружаться в ESP8266EX через один из доступных интерфейсов (SPI, UART, SDIO и др.) каждый раз в момент включения питания системы.

Чип ESP8266 не содержит в себе Flash-память и многих других компонентов для пользовательского старта. Микросхема является основой на базе которой выпускаются модули с необходимой периферией, например ESP-01.

Светодиодная индикация

Имя светодиода Назначение
LED Индикаторный светодиод подключённый к цифровому пину 1
POWER Индикатор питание на модуле

Распиновка

Пины питания

Пины ввода/вывода

В отличии от большинства плат Arduino, родным напряжением платформы ESP-01 является 3,3 В, а не 5 В. Выходы для логической единицы выдают 3,3 В, а в режиме входа ожидают принимать не более 3,3 В. Большее напряжение может повредить модуль!

Будьте внимательны при подключении периферии: убедитесь, что она может корректно функционировать в этом диапазоне напряжений.

Источник

WiFi ESP-01 (esp8266). Урок 19. Ардуино

Привет! Ну вот мы и подошли к самой интересной части работы с Ардуино. А именно wifi модуль и подключение устройств на Ардуино к беспроводной сети. В этом уроке мы настроим wifi модуль ESP-01 и попробуем подключиться к интернету с его помощью.

В предыдущих уроках мы уже говорили про подключение проводного интернета к Ардуино. Это также интересная тема, так что посмотрите тот урок, если уже забыли или пропустили.

А сегодня мы говорим про беспроводную сеть и wifi модуль ESP-01 (esp8266). Подключим его к плате и проверим подключение к сети с помощью АТ команд.

Для того, чтобы выполнить этот урок нам понадобиться

  • Ардуино UNO
  • Макетная плата
  • Перемычки
  • WIFI модуль ESP-01 (esp8266)
  • Кабель USB

WIFI модуль ESP-01

Модуль представляет собой небольшую плату. На ней уже есть встроенная антенна и 8 контактов для подключения у Ардуино или другим устройствам.

Технические характеристики

  • Wi-Fi 802.11 b/g/n
  • Режимы WiFi: клиент, точка доступа
  • Выходная мощность — 19,5 дБ
  • Напряжение питания — 1.8 -3.6 В
  • Ток потребления — 220 мА
  • Портов GPIO : 4
  • Тактовая частота процессора — 80 МГц
  • Объём памяти для кода
  • Оперативная память — 96 КБ
  • Размеры — 13×21 мм

Принципиальная схема

Подключим модуль к Ардуино, чтобы получить доступ к АТ командам.

Принципиальная схема подключения модуля esp-01

Обратите внимание, что модуль работает от 3.3 вольт. Контакт RX подключим к пину 0 на Ардуино. А контакт TX к 1 пину.

После подключения питания на модуле должна загореться красная лампочка. Если этого не произошло проверьте контакты питания и земли.

AT команды

После подключения Ардуино к компьютеру, нам понадобиться монитор последовательного порта. Скетч на саму плату Ардуино можно не загружать. А в мониторе переключиться на скорость 115200 и выбрать режим Both NL & CR.

Теперь мы можем отправить на модуль АТ команду и проверить его состояние. Введем в строку команду АТ и нажмем ввод. Если модуль успешно стартовал, то он отвечает «OK».

АТ команды и ответы модуля в мониторе порта

Переключить скорость на 9600 бод можно командой AT+UART=9600,8,1,0,0

Переключим режим модуля на клиент командой AT+CWMODE_CUR=1

И проверим, какие беспроводные сети есть в радиусе работы модуля командой AT+CWLAP

Эта команда выводит SSID, метод шифрования, силу сигнала, MAC адрес, номер канала. Типы шифрования: 0:Open, 1: WEP, 2:WPA_PSK, 3:WPA2_PSK, 4:WPA_WPA2_PSK. Моя сеть называется welcome.

Подключимся к сети выполнив команду AT+CWJAP_CUR =“welcome”,“password” И проверим ip адрес модуля командой AT+CIFSR

Подключимся к сети выполнив команду AT+CWJAP_CUR =“welcome”,“password”

После этого мы можем увидеть модуль в сети или пропинговать его.

Заключение

Мы рассмотрели wifi модуль esp-01 и подключили его к беспроводной сети. В следующий раз попробуем использовать модуль для отправки и получения данных через интернет.

Источник

ESP8266 и Arduino, подключение, распиновка

Привет Хабр. Тема ESP8266, как и IoT(интернет вещей), всё больше набирает популярности, и уже Arduino подхватывает инициативу — добавляя эти Wi-Fi модули в список поддерживаемых плат.
Но как же его подключить к ардуино? И возможно как-то обойтись вообще без ардуино? Сегодня именно об этом и пойдёт речь в этой статье.

Забегая наперёд, скажу, что будет вторая статья, уже более практическая, по теме прошивки и программирования модуля ESP8266 в среде разработки Arduino IDE. Но, обо всём по порядку.

Этот видеоролик, полностью дублирует материал, представленный в статье.

На данный момент, существует много разновидностей этого модуля, вот некоторые из них:

А вот распиновка ESP01, ESP03, ESP12:


* Данную картинку можно посмотреть в хорошем качестве на офф. сайте pighixxx.com.

Лично мне, больше всего нравится версия ESP07. Как минимум за то, что тут есть металлический экран (он защищает микросхемы от внешних наводок, тем самым обеспечивает более стабильную работу), своя керамическая антенна, разъём для внешней антенны. Получается, подключив к нему внешнюю антенну, например типа биквадрат, то можно добиться неплохой дальности. К тому же, тут есть немало портов ввода вывода, так называемых GPIO(General Purpose Input Output — порты ввода-вывода общего назначения), по аналогии с ардуино — пинов.

Давайте вернёмся к нашим баранам Wi-Fi модулям и Arduino. В этой статье, я буду рассматривать подключение ESP8266(модели ESP01) к Arduino Nano V3.

Но, данная информация будет актуальна для большинства модулей ESP8266 и так же разных Arduino плат, например самой популярной Arduino UNO.

Пару слов по ножкам ESP01:

Vcc и GND(на картинке выше это 8 и 1) — питание, на ножку Vcc можно подавать, судя по документации, от 3 до 3.6 В, а GND — земля (минус питания). Я видел, как один человек подключал этот модуль к двум AA аккумуляторам (напряжение питания в этом случае было примерно 2.7 В) и модуль был работоспособным. Но всё же разработчики указали диапазон напряжений, в котором модуль должен гарантированно работать, если вы используете другой — ваши проблемы.

Внимание! Этот модуль основан на 3.3 В логике, а Arduino в основном — 5 В логика. 5 В запросто могут вывести из строя ESP8266, потому на него нужно отдельно от ардуино подавать питание.

— На моей ардуинке есть ножка, где написано 3.3 В, почему бы не использовать её?

Наверное подумаете вы. Дело в том, что ESP8266 довольно таки прожорливый модуль, и в пиках может потреблять токи до 200 мА, и почти никакая ардуинка по умолчанию не способна выдать такой ток, разве что исключением является Arduino Due, у которой ток по линии 3.3 В может достигать 800 мА, чего с запасом хватит, в других же случаях советую использовать дополнительный стабилизатор на 3.3 В, например AMS1117 3.3 В. Таких валом как в Китае, так и у нас.

Ножка RST 6 — предназначена «железной» для перезагрузки модуля, кратковременно подав на неё низкий логический уровень, модуль перезагрузиться. Хоть и на видео я этим пренебрёг, но всё же вам советую «прижимать» данную ногу резистором на 10 кОм к плюсу питания, дабы добиться лучшей стабильности в работе модуля, а то у меня перезагружался от малейших наводок.

Ножка CP_PD 4(или по-другому EN) — служит, опять же, для «железного» перевода модуля в энергосберегающий режим, в котором он потребляет очень маленький ток. Ну и снова — не будет лишним «прижать» эту ногу резистором на 10 кОм к плюсу питалова. На видео я тупо закоротил эту ногу на Vcc, потому как под рукой не оказалось такого резистора.

Ноги RXD0 7 TXD0 2 — аппаратный UART, который используется для перепрошивки, но ведь никто не запрещает использовать эти порты как GPIO(GPIO3 и GPIO1 соотвественно). GPIO3 на картинке почему-то не размечен, но в даташите он есть:

К стати, к ножке TXD0 2 подключен светодиод «Connect», и горит он при низком логическом уровне на GPIO1, ну или когда модуль отправляет что-то по UART.

GPIO0 5 — может быть не только портом ввода/вывода, но и переводить модуль в режим программирования. Делается это подключив этот порт к низкому логическому уровню(«прижав» к GND) и подав питание на модуль. На видео я делаю это обычной кнопкой. После перепрошивки — не забудьте вытащить перемычку/отжать кнопку(кнопку во время перепрошивки держать не обязательно, модуль при включении переходит в режим программирования, и остаётся в нём до перезагрузки).

GPIO2 3 — порт ввода/вывода.

И ещё один немаловажный момент, каждый GPIO Wi-Fi модуля может безопасно выдавать ток до 6 мА, чтобы его не спалить, обязательно ставьте резисторы последовательно портам ввода/вывода на… Вспоминаем закон Ома R = U/I = 3.3В / 0.006 А = 550 Ом, то есть, на 560 Ом. Или же пренебрегайте этим, и потом удивляйтесь почему оно не работает.

В ESP01 все GPIO поддерживают ШИМ, так что к нашим четырём GPIO, то есть GPIO0-3 можно подключить драйвер двигателя, аля L293 / L298 и рулить двумя двигателями, например катера, или же сделать RGB Wi-Fi приблуду. Да, да, данный модуль имеет на борту много чего, и для простеньких проектов скрипач Arduino не нужен, только для перепрошивки. А если использовать ESP07 то там вообще портов почти как у Uno, что даёт возможность уже уверенно обходиться без ардуино. Правда есть один неприятный момент, аналоговых портов у ESP01 вообще нет, а у ESP07 только один, ADC зовётся. Это конечно усугубляет работу с аналоговыми датчиками. В таком случае ардуино аналоговый мультиплексор в помощь.

Всё вроде как по распиновке пояснил, и вот схема подключения ESP8266 к Arduino Nano:

Видите на Arduino Nano перемычка на ножках RST и GND? Это нужно для того, чтобы ардуинка не мешала прошивке модуля, в случае подключения ESP8266 при помощи Arduino — обязательное условие.

Так же если подключаете к Arduino — RX модуля должен идти к RX ардуинки, TX — TX. Это потому, что микросхема преобразователь уже подключена к ножкам ардуино в перекрестном порядке.

Так же немаловажен резистивный делитель, состоящий из резисторов на 1 кОм и 2 кОм (можно сделать из двух резисторов на 1 кОм последовательно соединив их) по линии RX модуля. Потому как ардуино это 5 В логика а модуль 3.3. Получается примитивный преобразователь уровней. Он обязательно должен быть, потому что ноги RXD TXD модуля не толерантные к 5 В.

Ну и можно вообще обойтись без ардуино, подключив ESP8266 через обычный USB-UART преобразователь. В случае подключения к ардуино, мы, по сути, используем штатный конвертер интерфейсов usb и uart, минуя мозги. Так зачем тратиться лишний раз, если можно обойтись и без ардуино вообще? Только в этом случае, мы подключаем RXD модуля к TXD конвертора, TXD — RXD.

Если вам лениво заморачиваться с подключением, возится с резисторами и стабилизаторами — есть готовые решения NodeMcu:

Тут всё значительно проще, воткнул кабель в компьютер, установил драйвера и программируй, только не забывай задействовать перемычку/кнопку на GPIO0 для перевода модуля в режим прошивки.

Ну вот, с теорией наверное всё, статья получилась пожалуй довольно таки большая, и практическую часть, аля прошивка и программирование модуля, я опубликую немного позже.

Я, у себя на ютуб канале, открыл целый плейлист посвящённый моим видео по теме этого Wi-Fi модуля. В планах построили машинку, или лодку, на Wi-Fi управлении, где вместо пульта ДУ будет обычный смарт. Но пока что я к этому ещё не пришёл, так что это всего лишь планы на будущее.

By Сергей ПоделкинЦ ака MrПоделкинЦ.

Уже на подходе плата на базе esp32:


http://www.pighixxx.com/test/2015/12/esp32-pinout/

Которая значительно круче чем esp8266, так что нас скоро ждёт бум, как мне кажется, темы IoT(интернет вещей).

Источник

Adblock
detector