Тахометр ардуино ваз

Урок 29. Тахометр. Определяем скорость вращения при помощи датчика линии

Тахометр собранный с использованием датчика линии прост в подключении. Вам не нужно вносить конструктивные изменения в деталь, скорость вращения которой требуется измерить: сверлить отверстия, делать прорези, устанавливать дополнительные элементы и т.д. Достаточно нанести на неё контрастную линию (чёрную на светлой поверхности или белую на тёмной) и поднести датчик линии, Вы сразу получите точный результат, количество оборотов в минуту. Скетч не нуждается в корректировке, независимо от того, какого цвета будет линия.

Нам понадобится:

Для реализации проекта нам необходимо установить библиотеку:

  • Библиотека iarduino_4LED (для работы с четырёхразрядным LED индикатором).

О том как устанавливать библиотеки, Вы можете ознакомиться на странице Wiki — Установка библиотек в Arduino IDE .

Видео:

Схема подключения:

LED индикатор подключается к любым двум выводам Arduino (как цифровым, так и аналоговым), номера указываются в скетче. Датчик линии подключается к любому аналоговому входу, номер указывается в скетче.

В данном уроке, LED индикатор подключён к цифровым выводам 2 и 3, а датчик линии подключён к аналоговому входу A0.

Источник

Тахометр ардуино ваз

Каравкин В.
У очень многих современных автомобилей нет ни тахометра ни вольтметра. Возможно, производители и правы, и знать водителю частоту вращения коленвала двигателя и напряжение в бортовой сети не обязательно. Но, если все же хочется, можно автомобиль дооборудовать тахометром и вольтметром. В продаже есть такие приборы, выводящие на цифровой индикатор частоту вращения и напряжение. Но, большинство из них сделаны на светодиодных индикаторах, что не очень удобно в автомобиле, потому что ярким солнечным днем цифры не видны, а ночью они слишком яркие. К тому же, обычно выводится только один параметр, а для просмотра другого нужно нажимать кнопку.
Здесь приводится описание очень несложного в изготовлении, благодаря применению готового модуля — ARDUINO UNO, прибора, который одновременно показывает и напряжение и частоту вращения коленвала. Причем, показывает это он на очень четком, подсвечиваемом ЖК-дисплее, который очень хорошо виден как днем, так и ночью. Следует заметить, что и себестоимость данного прибора относительно невысока, если покупать ARDUINO UNO и дисплей на радиорынке или на Aliexpress.


Индикатором служит ЖК-дисплей типа 1602А, он стандартный, на основе контроллера HD44780. Обозначение 1602А фактически значит, что он на две строки по 16 символов в строке.
Основой прибора служит ARDUINO UNO это относительно недорогой готовый модуль, — небольшая печатная плата, на которой расположен микроконтроллер ATMEGA328, а так же вся его «обвязка», необходимая для его работы, включая USB-программатор и источник питания.
Тем, кто незнаком с ARDUINO UNO, рекомендую сначала ознакомиться со статьей Л.1.
Прибор подключается по питанию к выходу замка зажигания автомобиля, а сигнал на измерение частоты вращения коленвала получает с датчика Холла, который является датчиком зажигания. Датчиком напряжения служит цепь питания прибора. То есть, он измеряет то напряжение, которым питается.
Прибор может работать только в автомобиле с электронной системой зажигания (в автомобиле с электромеханической системой зажигания датчика Холла нет).
Схема прибора показана на рисунке 1. На этом рисунке плата ARDUINO UNO показана схематично как «вид сверху». Для согласования цифрового порта с датчиком Холла используются каскад на транзисторе VT1.
Для измерения напряжения, простой делитель напряжения на резисторах R5 и R6. Он нужен потому, что максимальное напряжение, подаваемое на аналоговый вход не должно быть более 5V.
Так как питание поступает на прибор с выхода замка зажигания он работает только при включенном зажигании.
Датчик зажигания автомобиля с четырехцилиндровым бензиновым двигателем формирует два импульса за один оборот коленчатого вала. Если у двигателя не четыре цилиндра частота следования импульсов будет другой. Здесь именно под четырехцилиндровый мотор.
Программа на C++ с подробными комментариями приведена в таблице 1.

Действие программы по измерению частоты вращения коленвала основано на измерении периода импульсов, поступающих с датчика, и последующего расчета частоты вращения коленвала.
Для работы используется функция pulseln , которая измеряет в микросекундах длительность положительного либо отрицательного перепада входного импульса. Так что, для того чтобы узнать период нужно сложить длительность положительного и отрицательного полупериодов.
Далее, частота вращения вычисляется по формуле:
F=30/T
где Т — период в секундах, a F — частота вращения коленвала в оборотах в минуту. Поскольку период измерен в микросекундах фактически формула такая:
F= 30000000/T
Измерение длительности периода состоит из трех этапов, сначала измеряются длительности положительной и отрицательной полуволны в строках:
Htime=pulseIn(10,HIGH); Ltime=pulseIn(10,LOW);
Затем, происходит вычисление полного периода в строке:
Ttime=Htime+Ltime;
И потом, вычисление частоты вращения коленвала в строке:
frequency=30000000/Ttime;
Действие программы по измерению напряжения основано на чтении данных с аналогового входа и расчета результата измерения.
Выход аналогового порта преобразуется АЦП микроконтроллера в цифровую форму. Для получения результата в единицах вольт, нужно его умножить на 5 (на опорное напряжение, то есть, на напряжение питания микроконтроллера) и разделить на 1024.
Для того чтобы можно было измерять напряжение более 5V, вернее, более напряжения питания микроконтроллера, потому что реальное напряжение на
выходе 5-вольтового стабилизатора на плате ARDUINO UNO может отличаться от 5V, и обычно немного ниже, нужно на входе применить обычные резистивные делители.
Здесь это делитель напряжения на резисторах R5 и R6.
При этом, для приведения показаний прибора к реальному значению входного напряжения, нужно в программе задать деление результата измерения на коэффициент деления резистивного делителя. А коэффициент деления, обозначим его «К», можно вычислить по такой формуле:
К = R6 / (R5+R6)
Очень любопытно то, что резисторы в делителях совсем не обязательно должны быть высокоточными. Можно взять обычные резисторы, затем измерить их фактическое сопротивление точным омметром, и уже в формулу подставить эти измеренные значения. Получится значение «К» для конкретного делителя, которое и нужно будет подставлять в формулу.
Чтение данных с аналогового порта происходит в строке:
vout=analogRead(analogInput);
Затем, производится вычисление фактического напряжения с учетом коэффициента деления делителя входного напряжения:
volt=vout*5.0/1024.0/0.152;
В этой строке число 5.0 — это напряжение на выходе стабилизатора платы ARDUINO UNO. В идеале должно быть 5V, но для точной работы вольтметра это напряжение нужно предварительно измерить. Подключите источник питания напряжением 12V и измерьте достаточно точным вольтметром напряжение +5V на разъеме POWER платы. Что будет, то и вводите в эту строку вместо 5.0, например, если будет 4.85V, строка будет выглядеть так:
volt=vout*4.85/1024.0/0.152; На следующем этапе нужно будет измерить фактические сопротивления резисторов R5 и R6 и определить коэффициент К (указан 0.152) для этой строки по формуле:
К1 = R6 / (R5+R6)
Допустим, получилось К = 0.159, так и пишем:
volt=vout*4.85/1024.0/0.159;
Таким образом, в текст программы нужно внести изменения соответственно фактическому напряжению на выходе 5-воль-тового стабилизатора платы ARDUINO UNO и согласно фактическому коэффициенту деления резистивного делителя.
Затем, результаты измерений выводятся на ЖК-дисплей. Напряжение вносится в первую строку дисплея, а частота вращения во вторую. Единицы измерения указаны как «V» и «ob/min».
Если входного сигнала с датчика Холла нет, например, включили зажигание, но
двигатель не завели, то в строке, где индицируется частота вращения, будет надпись «inf».
Если прибор дает сбои при измерении частоты вращения коленвала, может потребоваться оптимизация режима работы входного каскада на транзисторе VT1, соответственно, подбором сопротивления резистора R3, а так же емкости конденсатора С2.
Статья в формате pdf
Литература:
1. Каравкин В. «Ёлочная мигалка на ARDUINO как средство от боязни микроконтроллеров», ж. Радиоконструктор, №11,2016г. стр. 25-30.
2. Каравкин В. «Частотомер на ARDUINO». ж. Радиоконструктор, №12, 2016г., стр. 12-15.
3. Каравкин В. «Спидометр и тахометр на ARDUINO для автомобиля», ж. Радиоконструктор, №12, 2016, стр. 34-36.
Радиоконструктор 01-2017

Оставлять комментарии могут только зарегистрированные пользователи

Источник

Тахометр или спидометр: Поток мыслей про измерение частоты в Arduino

Предистория

Если дома есть Arduino, в гараже машина или мотоцикл, а то и хоть мотособака, в голове туманные представления о программировании — возникает желание измерить скорость движения или обороты двигателя, посчитать пробег и моточасы.

В данной статье я хочу поделиться своим опытом по изготовлению подобных поделок.

Немного физики

Для измерения частоты вращения нам понадобится датчик положения колеса/вала/круга/итп. Датчик ставится как правило один. Возможно, что он будет срабатывать не один раз на каждый оборот. Например, у вас датчик Холла и 4 магнита на колесе. Таким образом, для правильного вычисления частоты нужно знать:

  • количество срабатываний датчика на один оборот К;
  • минимальная ожидаемая частота Мин.
  • максимальная ожидаемая частота Макс.

То есть, если частота меньше разумного минимума, то считаем, что она равна нулю, если больше максимума — игнорируем показания.

С количеством срабатываний понятно, но зачем ещё эти мины и максы? Давайте рассмотрим сначала варианты расчёта частоты.

Со скоростью всё проще, достаточно знать число π, диаметр колеса, а частоту вращения мы уже знаем.

Болванка для кода

Так как мы имеем дело с такими нежными величинами как время и пространство, то лучше сразу освоить прерывания.

Обратите внимание на модификатор volatile у переменной counter. Все переменные, которые будут изменяться в обработчике прерывания (ISR) должны быть volatile. Это слово говорит компилятору, что переменная может изменяться неожиданно и доступ к ней нельзя оптимизировать.

Функция ISR() вызывается каждый раз, когда появляется единица на ноге fqPin. Мы эту функцию не вызываем, это делает сам контроллер. Он это делает, даже когда основная программа стоит в ступоре на функции delay(). Считайте, что ISR() обслуживает событие, от вас не зависящее и данное вам свыше как setup() и loop(). Контроллер прерывает выполнение вашей программы, выполняет ISR() и возвращается обратно в ту же точку, где прерывал.

Обратите внимание, что в функции loop() мы отключаем прерывания вообще любые для того, чтобы прочитать переменную counter и сохранить её во временную переменную cnt. Потом, конечно же, включаем снова. Так мы можем потерять один вызов, конечно же, но с другой стороны, переменная unsigned long имеет 32 бита, а процессор ATMega32 8-битный, вряд ли он скопирует данные за один такт, а ведь в процессе копирования может случиться прерывание и часть данных изменится. По этой же причине мы копируем значение counter локально так как значение этой переменной при использовании в разных местах программы может быть разным опять же из-за изменения её в прерывании.

Тело функции ISR() должно быть максимально коротким, точнее, сама функция должна выполняться максимально быстро. Это важно, так как прерывается выполнение вашего кода, который может оказаться чувствительным к непредвиденным задержкам. Некоторые библиотеки отключают прерывания для выполнения чувствительных с задержкам операций, например для управления светодиодной лентой WS2812.

Считаем обороты за единицу времени.

Первое, что приходит в голову, это взять интервал времени и посчитать количество измерений.

Как и у многих простых решений, у этого есть неочевидные минусы. Для повышения точности измерений вам необходим довольно большой интервал времени. Принцип тот же, что и у Шума квантования. При времени оборота колеса сравнимом с временем подсчёта, существенные изменения скорости вращения не будут замечены. Показания такого частотомера будут различаться до двух раз на каждый отсчёт.

Для повышени точности на малой скорости можно увеличить число К, как это сделано, скажем, в автомобильной технике для датчика ABS. Можно увеличить время подсчёта. Делая и то и другое мы подходим ко второй проблеме — переполнению счётчика. Да, переполнение легко лечится увеличением количества бит, но арифметика процессора Arduino не умеет считать 64-битные числа столь быстро, как хотелось бы и как она это делает с 16-разрядными.

Увеличение времени расчёта тоже не очень хорошо тк нам надо знать частоту прямо сейчас, вот при нажатии на газ, а не через пару секунд. Да и через пару секунд мы получим скорее некое среднее значение. За это время можно несколько раз сделать врумм-врумм.

Есть другой метод. Он лишён вышеописанных недостатков, но, как водится, имеет свои.

Считаем интервал между отсчётами

Мы можем засечь время одного отсчёта и другого, вычислить разницу. Величина, обратная вычисленному интервалу и есть частота. Круто! Но есть минусы.

Что делать, если наше колесо крутится еле-еле и измеренный интервал превышает разумные пределы? Выше я предложил считать частоты ниже разумного минимума за ноль.

Определённым недостатком метода можно считать шумы квантования на высоких частотах, когда целочисленный интервал снижается до нескольких двоичных разрядов.

Так же хотелось бы некую статистику подсчётов для улучшения показаний, а мы берём лишь последнее значение.

Методом проб и ошибок я подобрал интервал отображения данных на дисплее в 250мс как оптимальный. Если чаще, то цифры размазываются, если реже — бесит тормознутость.

Комбинированный метод

Можно попробовать объединить достоинства обоих методов.

То есть, мы засекаем время не просто между отсчётами, а время между проверками данных и делим на количество отсчётов за это время. Получается усреднённый интервал между отсчётами, обратная величина от которого есть частота. Предоставим компилятору оптимизировать вычисления.

Обратите внимание, что за интервал считается не время опроса, как в первом примере, а время от последнего отсчёта до предыдущего последнего отсчёта в прошлом опросе. Это заметно поднимает точность вычисления.

Таким образом, мы можем получать вполне достоверные данные как на низких так и на высоких частотах.

Если использовать кооперативную многозадачнось, то можно сделать подсчёт, скажем раз 100мс, а вывод на дисплей раз в 250мс. Очень короткий интервал опроса снизит чувствительность к низким частотам.

Как говорят в рекламе, «но это ещё не всё».

Ошибки дребезга

Для устрашения вас предположу, что измеряем частоту вращения двигателя от индуктивного датчика зажигания. То есть, грубо говоря, на высоковольтный провод намотан кусок кабеля и мы измеряем индукцию в нём. Это довольно распространённый метод, не правда ли? Что же здесь сложного может быть? Самая главная проблема — современные системы зажигания, они дают не один импульс, а сразу пачку.

Но даже обычная система зажигания даёт переходные процессы:

Старинные же кулачковые контактные вообще показывают замечательные картинки.

Как с этим бороться? Частота вращения не может вырасти мгновенно, не даст инерция. Кроме того, в начале статьи я предложил ограничить частоту сверху разумными рамками. Отсчёты, что происходят слишком часто можно просто игнорировать.

Другой вид помех — это пропадание отсчётов. Из-за той же инерции у вас не может измениться частота в два раза за одну миллисекунду. Понятно, что это зависит от того, что вы собственно измеряете. Частота биения крыльев комара может, вероятно и за миллисекунду упасть до нуля.

Статистическая обработка в данном случае становится уже достаточно сложной для маленькой функции обработки прерывания и я готов обсудить варианты в комментариях.

Особенности измерения скорости движения и скорости вращения.

При измерении скорости вращения бензинового двигателя надо обязательно учесть величину К, которая совсем не очевидна. Например, вы намотали провод на кабель свечи и ожидаете, что там будет одна искра на один оборот. Это совсем не так. Во-первых, у 4-тактного двигателя вспышка происходит один раз на два оборота, у 2-тактного один раз на оборот коленвала. Во-вторых, для упрощения системы зажигания коммутатор подаёт искру на неработающие в данный момент цилиндры, типа на выпуске. Для получения правильного К надо почитать документацию на двигатель или подсмотреть показания эталонного тахометра.

При измерении скорости движения частота обновления дисплея не имеет большого значения, особенно, если вы рисуете цифры, а не двигаете стрелку. Даже обновление информации раз в секунду не вызовет отторжения. С оборотами двигателя всё наоборот, индикатор должен откликаться гораздо быстрее на изменение оборотов.

Вывод информации

Типичная обида начинающего разработчика автомобильной и мотоциклетной электроники «стрелки дёргаются, цифры нечитабельны» лечится простым способом — надо обманывать клиента. Вы что думаете, автомобильный тахометр всегда показывает вам правду? Конечно же нет! Хотя вам этот обман нравится и вы хотите, чтобы ваш прибор дурил голову так же.

Стрелки

Если включить зажигание на новом модном автомобиле или мотоцикле, стрелки приборов сделают красивый вжух до максимума и медленнее опадут до нуля. Вот! Вот это нам и надо сделать. Надо, чтобы при показе максимальной величины стрелка не метнулась к ней мгновенно и не упала как акции лохотрона в ноль.

Итак, нам надо учитывать максимальную скорость стрелки на увеличение и максимальную на уменьшение показаний. Совсем хорошо сделать эти скорости нелинейными, чтобы стрелка сначала двигалась быстрее, а потом чуть помедленнее приближалась к заданному значению.

Вот пример с нелинейным выводом показаний:

Вы можете поиграть с коэффициентами. Этот же принцип используется при выводе громкости сигнала, например, у любого аналогового индикатора: стрелки, полоски, яркость, цвет, размер итп. Приведённый пример самый простой, но и не самый красивый. Предлагайте ваши варианты в комментариях.

Цифры

С цифрами всё намного сложнее. Быстрые изменения показаний приводят к тому, что несколько порядков сливаются в мутное пятно. Для скорости, как и писал выше, можно задать интервал раз в секунду и глаз успеет прочитать три цифры.

В мототехнике не зря делают аналоговые индикаторы оборотов, точные цифры не нужны, важна относительная близость к оборотам максимального крутящего момента, к максимальным вообще и холостые.

Я предлагаю менять частоту вывода информации на дисплей в зависимости от степени изменения величины. Если обороты меняются, скажем, на 5% от последнего подсчёта, а не показа — можно затупить и показывать раз в 300-500мс. Если на 20%, то показывать раз в 100мс.

Можно огрубить шкалу и показывать только две значащие цифры

С учётом мототематики, можно довольно точно показывать обороты холостого хода как описано чуть выше и огрублять вывод на оборотах от двух холостых. На высоких оборотах для гонщиков важнее делать блинкеры типа «передачу вниз», «передачу вверх» и «ты спалишь движок». То есть держать двигатель около максимального крутящего момента и не дать ему крутиться выше максимальных разрешённых оборотов. Блинкеры замечательно делаются с помощью SmartDelay когда можно унаследовать от этого класса свой с заданной ногой контроллера и частотой мигания, там есть методы для переопределения и они вызываются раз в заданное время.

Идеи по отображению цифр тоже приветствуются в комментариях.

Вывод

Если наступить на все грабли, можно стать опытным разработчиком.

Источник

Adblock
detector