Схема подключения ультразвукового датчика к ардуино

Ультразвуковой дальномер HC-SR04: подключение, схема и примеры работы

Ультразвуковой дальномер рассчитан на определение расстояния до объектов в радиусе четырёх метров.

Работа модуля основана на принципе эхолокации. Модуль посылает ультразвуковой сигнал и принимает его отражение от объекта. Измерив время между отправкой и получением импульса, не сложно вычислить расстояние до препятствия.

Подключение ультразвукового дальномера к Arduino

Модуль подключается четырьмя проводами. Контакты VCC и GND служат для подключения питания, а Trig и Echo — для отправки и приема сигналов дальномера. Подключим их к пинам 10 и 11 соответственно.

Напряжение питания дальномера 5 В. Модуль работает и с платами, напряжение которых 3,3 В — в этом случае подключайте его к пинам группы с P8 по P13. Установите джампер выбора питания V2 на Troyka Shield в положение V2+5V. Пин микроконтроллера, соединённый с пином Echo должен быть толерантен к 5 В. Приведённая схема подходит для подключения дальномера к Iskra JS.

Пример работы

Рассмотрим как работает дальномер.

Зная продолжительность высокого сигнала на пине Echo можем вычислить расстояние, умножив время, которое потратил звуковой импульс, прежде чем вернулся к модулю, на скорость распространения звука в воздухе (340 м/с).

Функция pulseIn позволяет узнать длительность импульса в μs . Запишем результат работы этой функции в переменную duration.

Теперь вычислим расстояние переведя скорость из м/с в см/мкс:

distance = duration * 340 м/с = duration * 0.034 м/мкс

Преобразуем десятичную дробь в обыкновенную

distance = duration * 1/29 = duration / 29

Принимая во внимание то, что звук преодолел расстояние до объекта и обратно, поделим полученный результат на 2

distance = duration / 58

Оформим в код всё вышесказанное и выведем результат в Serial Monitor

Работа с библиотекой

Количество строк кода можно существенно уменьшить, используя библиотеку для работы с дальномером.

Источник

Ардуино: ультразвуковой дальномер HC-SR04

Дальномер — это устройство для измерения расстояния до некоторого предмета. Дальномер помогает роботам в разных ситуациях. Простой колесный робот может использовать этот прибор для обнаружения препятствий. Летающий дрон использует дальномер для баражирования над землей на заданной высоте. С помощью дальномера можно даже построить карту помещения, применив специальный алгоритм SLAM.

Принцип действия

На этот раз мы разберем работу одного из самых популярных датчиков — ультразвукового (УЗ) дальномера. Существует много разных модификаций подобных устройств, но все они работают по принципу измерения времени прохождения отраженного звука. То есть датчик отправляет звуковой сигнал в заданном направлении, затем ловит отраженное эхо и вычисляет время полета звука от датчика до препятствия и обратно.

Из школьного курса физики мы знаем, что скорость звука в некоторой среде величина постоянная, но зависящая от плотности среды. Зная скорость звука в воздухе и время полета звука до цели, мы можем рассчитать пройденное звуком расстояние по формуле:

где v — скорость звука в м/с, а t — время в секундах. Скорость звука в воздухе, кстати, равна 340.29 м/с.

Чтобы справиться со своей задачей, дальномер имеет две важные конструктивные особенности. Во-первых, чтобы звук хорошо отражался от препятствий, датчик испускает ультразвук с частотой 40 кГц. Для этого в датчике имеется пьезокерамический излучатель, который способен генерировать звук такой высокой частоты. Во-вторых, излучатель устроен таким образом, что звук распространяется не во все стороны (как это бывает у обычных динамиков), а в узком направлении. На рисунке представлена диаграмма направленности типичного УЗ дальномера.

Как видно на диаграмме, угол обзора самого простого УЗ дальномера составляет примерно 50-60 градусов. Для типичного варианта использования, когда датчик детектирует препятствия перед собой, такой угол обзора вполне пригоден. Ультразвук сможет обнаружить даже ножку стула, тогда как лазерный дальномер, к примеру, может её не заметить.

Если же мы решим сканировать окружающее пространство, вращая дальномер по кругу как радар, УЗ дальномер даст нам очень неточную и шумную картину. Для таких целей лучше использовать как раз лазерный дальномер.

Также следует отметить два серьезных недостатка УЗ дальномера. Первый заключается в том, что поверхности имеющие пористую структуру хорошо поглощают ультразвук, и датчик не может измерить расстояние до них. Например, если мы задумаем измерить расстояние от мультикоптера до поверхности поля с высокой травой, то скорее всего получим очень нечеткие данные. Такие же проблемы нас ждут при измерении дистанции до стены покрытой поролоном.

Второй недостаток связан со скоростью звуковой волны. Эта скорость недостаточно высока, чтобы сделать процесс измерения более частым. Допустим, перед роботом есть препятствие на удалении 4 метра. Чтобы звук слетал туда и обратно, потребуется целых 24 мс. Следует 7 раз отмерить, прежде чем ставить УЗ дальномер на летающих роботов.

Ультразвуковой дальномер HC-SR04

В этом уроке мы будем работать с датчиком HC-SR04 и контроллером Ардуино Уно. Этот популярный дальномер умеет измерять расстояние от 1-2 см до 4-6 метров. При этом, точность измерения составляет 0.5 — 1 см.

Встречаются разные версии одного и того же HC-SR04. Одни работают лучше, другие хуже. Отличить их можно по рисунку платы на обратной стороне. Вот одна из версий:

Подключение HC-SR04

Датчик HC-SR04 имеет четыре вывода. Кроме земли (Gnd) и питания (Vcc) еще есть Trig и Echo. Оба этих вывода цифровые, так что подключаем из к любым выводам Ардуино Уно:

HC-SR04 GND VCC Trig Echo
Arduino Uno GND +5V 3 2

Принципиальная схема устройства

Внешний вид макета

Программа

Итак, попробуем приказать датчику отправить зондирующий ультразвуковой импульс, а затем зафиксируем его возвращение. Посмотрим как выглядит временная диаграмма работы HC-SR04.

На диаграмме видно, что для начала измерения нам необходимо сгенерировать на выводе Trig положительный импульс длиной 10 мкс. Вслед за этим, датчик выпустит серию из 8 импульсов и поднимет уровень на выводе Echo, перейдя при этом в режим ожидания отраженного сигнала. Как только дальномер почувствует, что звук вернулся, он завершит положительный импульс на Echo.

Получается, что нам нужно сделать всего две вещи: создать импульс на Trig для начала измерения, и замерить длину импульса на Echo, чтобы потом вычислить дистанцию по нехитрой формуле. Делаем.

Функция pulseIn замеряет длину положительного импульса на ноге echoPin в микросекундах. В программе мы записываем время полета звука в переменную duration. Как мы уже выяснили ранее, нам потребуется умножить время на скорость звука:

s = duration * v = duration * 340 м/с

Переводим скорость звука из м/с в см/мкс:

s = duration * 0.034 cм/мкс

Для удобства преобразуем десятичную дробь в обыкновенную:

s = duration * 1/29 = duration / 29

А теперь вспомним, что звук прошел два искомых расстояния: до цели и обратно. Поделим всё на 2:

s = duration / 58

Теперь мы знаем откуда взялось число 58 в программе!

Загружаем программу на Ардуино Уно и открываем монитор последовательного порта. Попробуем теперь наводить датчик на разные предметы и смотреть в мониторе рассчитанное расстояние.

Задания

Теперь, когда мы умеем вычислять расстояние с помощью дальномера, сделаем несколько полезных устройств.

  1. Строительный дальномер. Программа каждые 100мс измеряет расстояние с помощью дальномера и выводит результат на символьный ЖК дисплей. Для удобства полученное устройство можно поместить в небольшой корпус и запитать от батареек.
  2. Ультразвуковая трость. Напишем программу, которая будет «пищать» зуммером с различной частотой, в зависимости от измеренного расстояния. Например, если расстояние до препятствия более трех метров — зуммер издает звук раз в пол секунды. При расстоянии 1 метр — раз в 100мс. Менее 10см — пищит постоянно.

Заключение

Ультразвуковой дальномер — простой в использовании, дешевый и точный датчик, который отлично выполняет свою функцию на тысячах роботов. Как мы выяснили из урока, у датчика есть недостатки, которые следует учитывать при постройке робота. Хорошим решением может стать совместное использование ультразвукового дальномера в паре с лазерным. В таком случае, они будут нивелировать недостатки друг друга.

Источник

Ультразвуковой дальномер на Arduino

Предисловие

Так получилось, что в университете я изучаю C/C++. Для души пробую делать небольшие проекты на Python. Я много слышал про платформу Arduino, смотрел видео на YouTube, частенько посещал Arduino Project Hub и вот мне стало интересно самому поэкспериментировать, углубясь в разработку под микроконтроллеры. Купив стартовый набор с самой платой и горстью электронных компонентов и попробовав собрать проекты из обучающей брошюры, понял, что надо двигаться дальше. Продумав саму идею следующей самоделки, отправился на просторы Google и обнаружил, что не могу найти всего, что мне нужно на одном ресурсе. Безусловно, мне несложно было посетить несколько сайтитов и блогов с информацией, но я бы сильно сэкономил время, если бы нашел все в одном месте. Так и появилась эта статья-туториал.

Суть проекта

Мне хотелось сделать дальномер. Во-первых, из-за того, что у меня был ультразвуковой датчик и надо было научиться с ним взаимодействовать. Во-вторых, я хотел выводить всю информацию на OLED-дисплей. В статьях, которые я находил, либо рассказывалось про работу с дисплеем и датчиком по отдельности, либо они являлись частью совершенно другого проекта. Я собрал все необходимое тут и надеюсь, что это сможет как-то помочь другим.

Любая плата Arduino (у меня Uno);

Ультразвуковой дальномер HC-SR04;

OLED-дисплей на 0,96 дюймов;

Работа с OLED-дисплеем

OLED-дисплей идеально подходит для DIY-устройств. Во-первых, мы имеем достаточно высокое разрешение экрана — 128×64 пикселя. Во-вторых, дисплей работает без модуля подсветки, что обеспечивает низкое потребление энергии. В-третьих, для подключения используется всего четыре разъема — два для питания и два для обмена информацией. Но несмотря на это, у OLED-дисплеев есть и минусы. Со временем пиксели могут тускнеть и перегорать.

Вот таким образом можно подключить дисплей:

Схема подключения

Есть несколько библиотек для работы с OLED-дисплеями, мне больше нравится OLED_I2C. Мне она кажется очень простой и максимально понятной. Следующим образом выведем классический «Hello, world!» на дисплей:

Если функции без параметров понятны сразу и не вызывают вопросов, то с функциями вывода на дисплей могут быть вопросы. Давайте сразу с ними разберемся, их существует всего три вида:

print(st, x, y) — печать строки на дисплей.
Параметры:
st: строка для печати;
x: координата верхнего левого угла первого символа по горизонтали;
y: координата верхнего левого угла первого символа по вертикали.
В качестве координат можно использовать как сами координаты, так и литералы LEFT, CENTER, RIGHT.

printNumI(num, x, y, [length, [filler]]) — печать целого числа на дисплей.
Параметры:
num: Число для вывода на экран (от -2147483648 до 2147483647);
x: координата верхнего левого угла первой цифры/знака по горизонтали;
y: координата верхнего левого угла первой цифры/знака по вертикали;
length: минимальное количество цифр для отображения на экране;
filler: Символ для заполнения, чтобы получить минимальную длину. По умолчанию “ “.
В качестве координат можно использовать как сами координаты, так и литералы LEFT, CENTER, RIGHT.

printNumF(num, dec, x, y, [divider, [length, [filler]]]) — печать числа с плавающей точкой на дисплей.
Параметры:
num: Число для вывода на экран (от -2147483648 до 2147483647);
dec: количество цифр после запятой (в дробной части) (допустимые значения 1-5);
x: координата верхнего левого угла первой цифры/знака по горизонтали;
y: координата верхнего левого угла первой цифры/знака по вертикали;
divider: Одиночный символ для использования в качестве десятичной точки. По умолчанию ‘.’;
length: минимальное количество цифр для отображения на экране;
filler: Символ для заполнения, чтобы получить минимальную длину.
По умолчанию “ “.В качестве координат можно использовать как сами координаты, так и литералы LEFT, CENTER, RIGHT.

Работа с ультразвуковым дальномером

Ультразвуковой датчик расстояния работает по принципу эхолокации — посылает пучок ультразвука и получает его отражение с некоторой задержкой, с помощью которой и можно высчитать расстояние до объекта. Работает датчик от напряжения в 5V на расстоянии от 2 до 400 сантиметров.

Для получения данных с датчика необходимо:

Подать на выход Trig импульс длительностью 10 микросекунд;

Трансмиттер отправит 8 импульсов с частотой 40 кГц;

Когда импульсы отразятся от препятствия и будут приняты ресивером, то на выходе Echo образуется входной сигнал;

С помощью формулы данные преобразуются в расстояние. Чтоб получить расстояние в сантиметрах, нам необходимо разделить ширину импульса на 58, для получения расстояния в дюймах — на 148.

Подключить датчик к плате можно следующим образом:

Схема подключения

Финальный проект

Теперь, когда мы разобрались с работой с каждого элемента по отдельности, можно перейти к основному проекту дальномера.

Подключим все элементы к плате следующим образом:

Схема проекта

Финальный проект в работе выглядит следующим образом:

Что дальше?

Проект дальномера готов и прекрасно работает, но несмотря на все, он не является идеальным законченным решением. Можно поработать над улучшениями, и сделать следующие:

Перенести все на монтажную плату и избавиться от макетки. Тогда получится цельное устройства без торчащих проводов;

Перейти на Arduino Nano ради более компактного размера;

Добавить автономное питание для работы без кабеля;

Источник

Adblock
detector