Схема подключения датчика температуры к ардуино нано

Содержание

Датчик температуры DS18B20: подключение, распиновка и примеры работы

Цифровой датчик DS18B20 измерит температуру в воде, на земле и даже в космосе.

Датчик способен считывать показания температуры в диапазоне от −55 до +125 °C и передавать данные на управляющую плату всего через один пин.

Примеры работы для Arduino

Датчик общается с управляющей платой по протоколу 1-wire . Но вы можете не загружать себе голову битами и байтами, а сразу сосредоточиться на проекте. Для этого скачайте и установите две библиотеки OneWire и DallasTemperature через менеджер модулей.

Один датчик

Рассмотрим простой пример — подключения одного датчика.

Схема подключения

Сенсор подключается к управляющей плате через один сигнальный пин. При подключении к Arduino в компактном форм-факторе, например Micro или Iskra Nano Pro, воспользуйтесь макетной платой и парочкой нажимных клеммников.

Между сигнальным проводом и питанием установите сопротивление 4,7 кОм.

При коммуникации сенсора со стандартными платами Arduino Uno формата Rev3 или Iskra Uno используйте Troyka Slot Shield совместно с модулем подтяжки.

Код программы

Выведем температуру сенсора в Serial-порт.

Серия датчиков

Каждый сенсор DS18B20 хранит в своей памяти уникальный номер, такое решение позволяет подключить несколько датчиков к одному пину.

Схема подключения

Добавим к предыдущем схемам подключения ещё по паре датчиков в параллель.

Код программы

Просканируем все устройства на шине 1-Wire и выведем температуру каждого сенсора отдельно в Serial-порт.

Примеры работы для Espruino

Один датчик

Рассмотрим простой пример — подключения одного датчика.

Схема подключения

Сенсор подключается к управляющей плате через один сигнальный пин. При подключении к Iskra в компактном формфакторе, например Iskra JS Mini, воспользуйтесь макетной платой и парочкой нажимных клеммников.

Между сигнальным проводом и питанием установите сопротивление 4,7 кОм.

При коммуникации сенсора с платой Iskra JS, используйте Troyka Slot Shield совместно с модулем подтяжки.

Код программы

Выведем температуру сенсора в консоль Espruino Web IDE.

Серия датчиков

Каждый сенсор DS18B20 хранит в своей памяти уникальный номер, такое решение позволяет подключить несколько датчиков к одному пину.

Схема подключения

Добавим к предыдущем схемам подключения ещё по паре датчиков в параллель.

Код программы

Найдём все устройства на шине 1-Wire и выведем температуру каждого сенсора отдельно в Serial-порт.

Примеры работы для Raspberry Pi

Один датчик

Считаем данные с датчика одноплатником Raspberry Pi. Подключите сенсор к 4 пину Raspberry через модуль подтяжки. Для избежания макеток и проводов используйте плату расширения Troyka Cap.

Схема подключения

Код программы

Считаем данные с датчика одноплатником Raspberry Pi. Подключите сенсор к 4 пину Raspberry через модуль подтяжки. Для избежания макеток и проводов используйте плату расширения Troyka Cap.

Серия датчиков

Каждый сенсор DS18B20 хранит в своей памяти уникальный номер, такое решение позволяет подключить несколько датчиков к одному пину.

Источник

Урок 10 — Датчик температуры DS18B20, подключаем к Arduino.

В предыдущем уроке мы рассмотрели подключения датчика температуры и влажности DHT11 к Arduino. И выяснили что данный датчик не очень точный. Чем же его можно заменить? Одним из распространенных датчиков для измерения температуры являться DS18B20. Рассмотрим в данном уроке варианты подключения датчика, пару примеров программного решения.

Характеристики датчика DS18B20:

  • Погрешность измерения не больше 0,5 С (для температур от -10С до +85С). Не требуется дополнительная калибровка.
  • Диапазон измерений от -55 С до +125 С.
  • Напряжение питания от 3,3В до 5В.
  • Датчик обладает своим уникальным серийным кодом.
  • Не требуются дополнительные внешние элементы.
  • Можно подключить сразу до 127 датчиков к одной линии связи.
  • Информация передается по протоколу Wire.
  • Существует так называемый режим паразитного питания – в нем происходит питание напрямую от линии связи. Для подключения в этом случае нужны только 2 провода. Важно, что в этом режиме не гарантируется корректная работа при температурах выше 100С. Режим паразитного питания удобно обычно применяется для приложений с удаленным температурным датчиком.

Датчик выпускается в открытом корпусе в виде транзистора для измерения температуры воздуха.

Можно купить датчик в виде модуля DS18B20. Распаренный на плате.

Также датчик DS18B20 продеться в закрытом корпусе для измерения температуры жидкости.

Для урока нам понадобиться:

Подключаем датчик DS18B20 к Arduino NANO вот по такой схеме.

Подключение датчика DS18B20 к Arduino UNO будет вот таким.

Для написания программы нам понадобиться библиотека OneWire.

Данную библиотеку можно установить из менеджера библиотек или скачать отсюда.

Код ниже будет выводить показание температуры в монитор порта каждую секунду.

Но данный пример достаточно сложный для понимания. Для упрощения работы с датчиком лучше использовать библиотеку DallasTemperature. Данная библиотека ставиться поверх OneWire. Т.е. для ее роботы должна быть установлена библиотека OneWire.

С библиотекой DallasTemperature устанавливаются примеры. Вы можете воспользоваться любым из них.

Мы рассмотрим более простотой пример.

В данном примере температура выводиться 1 раз в секунду. И при этом выводится температура в Цельсиях и фарингитах.

Как видите данный пример намного меньше и более понятен для новичка.


На одну шину можно подключить до 127 датчиков вот по такой схеме.

С библиотекой DallasTemperature идут примеры которые позволяют получать данные с датчиков при током подключении.

Подписывайтесь на мой канал на Youtube и вступайте в группы в Вконтакте и Facebook.

Спасибо за внимание!

Понравилась статья? Поделитесь ею с друзьями:

Источник

Как подключить датчик ds18b20 к Ардуино

Как подключить к Ардуино термодатчик DS18B20 и DS18B22, чтобы сделать термометр с помощью библиотеки OneWire — рассмотрим в этом уроке. В отличие от датчика температуры и влажности DHT11, сенсор работает в широком диапазоне температур и способен измерять отрицательные температуры. Интегральный датчик температуры DS18B20 для Arduino имеет разрешающую способность измерений до 0,0625 °C.

Датчик DS18B20: характеристики

  • диапазон измерения температуры -55 … +125 °C;
  • погрешность сенсора не превышает 0,5 °C;
  • разрешающая способность достигает 0,0625 °C;
  • сенсор DS18B20 откалиброван при изготовлении;
  • можно подключить до 127 датчиков на одной линии;
  • для подключения требуется только 3 провода.

Подключение и распиновка термодатчика ds18b20

Цифровой датчик DS18B20 отправляет данные по Wire шине и может работать на одной линии с множеством других устройств. Каждый датчик имеет свой персональный 64-битный код, позволяющий микроконтроллеру Arduino общаться на одной шине сразу с несколькими сенсорами. Датчик преобразует температуру окружающей среды в цифровой код, т.е. для подключения не требуется дополнительного АЦП.

Подключение к Ардуино датчика ds18b20

Для этого занятия потребуется:

  • Arduino Uno / Arduino Nano / Arduino Mega;
  • термодатчик DS18B20;
  • макетная плата;
  • резистор на 4.7 кОм;
  • провода «папа-мама», «папа-папа».

Схема подключения датчика ds18b20 к Arduino Uno

Подключите датчик температуры DS18B20 к микроконтроллеру согласно схеме, и загрузите скетч для датчика температуры ds18b20 к Arduino UNO.

Работа с библиотекой DallasTemperature

Библиотека для Arduino DallasTemperature Sensors OneWire значительно облегчает и упрощает работу с сенсором DS18B20. Описание библиотеки DallasTemperature.h на русском говорит, что датчик управляется несколькими простыми функциями, которые представлены в следующем скетче. Схема подключения датчика не меняется, а скачать библиотеку DallasTemperature.h для Ардуино можно на нашем сайте здесь.

Скетч для датчика ds18b20 Ардуино

Скетч для нескольких датчиков на одной шине

Подключите несколько термодатчиков DS18B20 к микроконтроллеру согласно схеме, и загрузите скетч для датчика температуры ds18b20 к Arduino UNO.

Пояснения к коду:

  1. DallasTemperature датчик подключается к порту A1, он же 15 цифровой порт;
  2. цикл for выполняется столько раз, сколько обнаружено сенсоров на одой шине.

Заключение. Датчик может быть выполнен в нескольких вариантах (смотри фото выше), от этого будет зависеть только схема подключения термодатчика к Arduino NANO или UNO. В первом случае необходимо использовать подтягивающий резистор на 4.7 кОм. Датчик, в виде готового модуля уже имеет резистор. Третий вариант — это датчик в герметичном корпусе, который можно смело использовать в горячей воде.

Источник

Arduino и термометр DS18B20

Описание

DS18B20 – высокоточный цифровой датчик температуры. Основные характеристики:

  • Диапазон: -55.. 125 °C
  • Точность: 0.5 °C
  • Разрешение: 9.. 12 бит (0.48.. 0.06 °C)
  • Питание: 3-5.5V
  • Период выдачи результата:
    • 750 мс при точности 12 бит
    • 94 мс при точности 9 бит
  • Интерфейс связи: 1-Wire (OneWire)
  • Корпус: TO-92, SOIC-8 или герметичное исполнение

В наборе идёт датчик в герметичном исполнении со стандартным гнездом (шаг 2.54 мм) для подключения

Подключение

Датчик имеет следующие назначения пинов:

Датчик подключается к любому цифровому пину Arduino, но пин должен быть подтянут к питанию резистором 4.7 кОм. На один пин можно подключить несколько датчиков DS18B20.

В рамках набора GyverKIT резистор на 4.7 кОм можно заменить двумя резисторами на 10 кОм (есть в комплекте), подключенными параллельно:

Библиотеки

Для этого датчика есть несколько библиотек:

  • “Официальная” библиотека DallasTemperature.h, для работы которой также понадобится библиотека OneWire.h.
  • Наша библиотека microDS18B20

В примерах на этом сайте мы будем использовать microDS18B20, так как она в несколько раз легче и проще в использовании, чем официальная. Библиотека идёт в архиве к набору GyverKIT, а свежую версию всегда можно установить/обновить из встроенного менеджера библиотек Arduino по названию microDS18B20. Краткая документация находится по ссылке выше, базовые примеры есть в самой библиотеке.

Работа с microDS18B20

Без адресации

В этом режиме на один пин МК подключается один датчик, для работы с ним не требуется предварительного чтения адреса и записи его в программу. Можно подключить несколько датчиков, каждому указать свой пин, см. пример one_pin_one_sensor.

С адресацией

В этом режиме можно подключить сколько угодно датчиков на один пин МК, но для работы с ними понадобится занести в программу уникальные адреса датчиков. В момент чтения адреса к пину должен быть подключен только один датчик! Пример – address_read. Для дальнейшей работы адреса хранятся в массивах на стороне программы и передаются датчикам при инициализации, пин указывается один и тот же:

Также адрес можно сменить во время работы программы, см. документацию.

Чтение температуры

Чтение температуры делится на два этапа – запрос и получение данных. Запрос делается функцией requestTemp() . После получения запроса датчик начинает измерение температуры, которое длится от 90 до 750 мс в зависимости от настроенной точности (по умолчанию точность максимальная, преобразование длится 750 мс). Если прочитать температуру до окончания преобразования – датчик вернёт результат предыдущего измерения, поэтому в примерах используется задержка или опрос по таймеру на 1 секунду. Получить температуру можно при помощи getTemp() [float] или getTempInt() [int]. Если принятые данные повреждены или датчик отсутствует на линии – функция вернёт предыдущее успешно прочитанное значение температуры.

Примечание: при повторных вызовах getTemp() не запрашивает с датчика новую температуру (долгое выполнение функции), вместо этого она просто возвращает предыдущий результат до тех пор, пока не будет сделан новый запрос requestTemp().

В версии библиотеки 3.5 появилась возможность отдельно запросить температуру и определить корректность полученных данных, чтобы только после этого их прочитать и применить в программе – функция readTemp() . Также это позволяет определить состояние подключения и всё ли в порядке с датчиком. Для чтения температуры рекомендуется использовать конструкцию вида:

где readTemp() запрашивает данные с датчика и возвращает true , если они прочитаны корректно. После этого можно забрать текущую температуру из getTemp() , которая уже не запрашивает температуру с датчика, а отдаёт прочитанный в readTemp() результат.

Примеры

Библиотека позволяет работать по схеме “один датчик – один пин”, в которой адрес датчика получать не нужно. Достаточно подключить и использовать:

Источник