Сборка робот манипулятор ардуино

Подключение и управление манипулятором

Введение:

Робот-платформа «Манипулятор» — позволяет собрать манипулятор для захвата и перемещения небольших предметов. В набор входит подробная инструкция по его сборке и наладке, а также пример скетча для управления манипулятором при помощи не входящих в состав набора, одной Arduino UNO, одного Trerma-Power Shield и четырёх Trema-потенциометров.

Видео:

Подключение:

Если Вы собрали детали манипулятора в соответствии с инструкцией, то можно приступить к сборке электронной схемы. Мы предлагаем подключить сервоприводы манипулятора к Arduino UNO через Trerma-Power Shield, а управлять сервоприводами используя Trema-потенциометры.

  • Сервоприводы подключаются к выводам D10-D7 на Trerma-Power Shield (можно менять в скетче).
  • Trema-потенциометры подключаются к выводам A2-A5 на Trerma-Power Shield (можно менять в скетче).
  • Джампер (перемычка) выбора схемы питания на плате Trerma-Power Shield устанавливается в положение «Общ.Vin».
  • Источник питания на 7 — 12 В постоянного тока подключается к клеммнику на Trerma-Power Shield.
  • Подключать питание к Arduino UNO не нужно, так как на Trerma-Power Shield установлен джампер «Общ.Vin», значит, на вход Vin Arduino UNO подается питание со входа «VinS» Trerma-Power Shield.

Питание:

У Trerma-Power Shield есть возможность выбора схемы питания установкой джампера (перемычки) на его плате в одно из двух положений: «Общ.Vin» или «Общ.5V». Манипулятор будет работать при любой схеме подключения питания:

  • Если у Вас имеется источник питания на 7 — 12 В с проводом на конце которого имеется штекер, то его нужно подключить к Arduino UNO и установить джампер в положение «Общ.Vin».
  • Если у Вас имеется источник питания на 7 — 12 В с проводом без штекера, то его нужно подключить к коннектору Trerma-Power Shield и установить джампер в положение «Общ.Vin».
  • Если у Вас имеется источник питания на 7 — 30 В с проводом без штекера, то его нужно подключить к коннектору Trerma-Power Shield и установить джампер в положение «Общ.5V».
  • Если Вы собираетесь манипулировать относительно тяжёлыми грузами, или используете более мощные сервоприводы (не из набора), то снимите джампер и подключите два источника питания (7 — 30 В к Trerma-Power Shield, а 7 — 12 В к Arduino UNO).

В приведённом выше примере подключения, используется вторая схема выбора питания: источник питания на 7 — 9 В подключён к клеммнику Trerma-Power Shield, а джампер (перемычка) установлен в положение «Общ.Vin».

Работа манипулятора:

Алгоритм программы (скетча) прост: поворот ручки Trema-потенциометра приводит в движение сервопривод.

  • Поворот ручки первого Trema-потенциометра приведёт к повороту основания.
  • Поворот ручки второго Trema-потенциометра приведёт к повороту левого плеча.
  • Поворот ручки третьего Trema-потенциометра приведёт к повороту правого плеча.
  • Поворот ручки четвёртого Trema-потенциометра приведёт в движение захват.

В коде программы (скетче) предусмотрена защита сервоприводов, которая заключается в том, что диапазон их вращения ограничен интервалом (двумя углами) свободного хода. Минимальный и максимальный угол вращения указываются в качестве двух последних аргументов функции map() для каждого сервопривода. А значение этих углов определяется в процессе калибровки, которую нужно выполнить до начала работы с манипулятором.

Код программы:

Если вы подадите питание, до калибровки, манипулятор может начать двигаться неадекватно! Сначала выполните все шаги калибровки.

Калибровка:

Перед началом работы с манипулятором, его нужно откалибровать!

    Калибровка заключается в указании крайних значений угла поворота для каждого сервопривода, так чтобы детали не мешали их движениям.
  • Отсоедините все сервоприводы от Trema-Power Shield, загрузите скетч и подключите питание.
  • Откройте монитор последовательного порта.
  • В мониторе будут отображаться углы поворота каждого сервопривода (в градусах).
  • Подключите первый сервопривод (управляющий вращением основания) к выводу D10.
  • Поворот ручки первого Trema-потенциометра (вывод A2) приведёт к повороту первого сервопривода (вывод D10), а в мониторе изменится значение текущего угла этого сервопривода (значение: A1 = . ). Крайние положения первого сервопривода будут лежать в диапазоне, от 10 до 170 градусов (как написано в первой строке кода loop). Этот диапазон можно изменить, заменив значения последних двух аргументов функции map() в первой строке кода loop, на новые. Например, заменив 170 на 180, Вы увеличите крайнее положение сервопривода в данном направлении. А заменив 10 на 20, Вы уменьшите другое крайнее положение того же сервопривода.
  • Если Вы заменили значения, то нужно заново загрузить скетч. Теперь сервопривод будет поворачиваться в новых, заданных Вами, пределах.
  • Подключите второй сервопривод (управляющий поворотом левого плеча) к выводу D9.
  • Поворот ручки второго Trema-потенциометра (вывод A3) приведёт к повороту второго сервопривода (вывод D9), а в мониторе изменится значение текущего угла этого сервопривода (значение: A2 = . ). Крайние положения второго сервопривода будут лежать в диапазоне, от 80 до 170 градусов (как написано во второй строке кода loop скетча). Этот диапазон изменяется так же как и для первого сервопривода.
  • Если Вы заменили значения, то нужно заново загрузить скетч.
  • Подключите третий сервопривод (управляющий поворотом правого плеча) к выводу D8. и аналогичным образом осуществите его калибровку.
  • Подключите четвертый сервопривод (управляющий захватом) к выводу D7. и аналогичным образом осуществите его калибровку.

Калибровку достаточно выполнить 1 раз, после сборки манипулятора. Внесённые Вами изменения (значения предельных углов) сохранятся в файле скетча.

Источник

Недорогая роборука, программируемая на Ардуино: роботизированный манипулятор своими руками

Эта статья — вводное руководство для новичков по созданию роботизированных рук, которые программируются при помощи Ардуино. Концепция состоит в том, что проект роборуки будет недорогим и простым в сборке. Мы соберём несложный прототип с кодом, который можно и нужно оптимизировать, это станет для вас отличным стартом в робототехнике. Робот-манипулятор на Ардуино управляется хакнутым джойстиком и может быть запрограммирован на повторение последовательности действий, которую вы зададите. Если вы не сильны в программировании, то можете заняться проектом в качестве тренировки по сборке «железа», залить в него мой код и получить на его основе базовые знания. Повторюсь, проект достаточно простой.

На видео — демка с моим роботом.

Шаг 1: Список материалов

  1. Плата Ардуино. Я использовал Уно, но любая из разновидностей одинаково хорошо справится с задачами проекта.
  2. Сервоприводы, 4 самых дешевых, что вы найдёте.
  3. Материалы для корпуса на ваш вкус. Подойдёт дерево, пластик, метал, картон. Мой проект собран из старого блокнота.
  4. Если вы не захотите заморачиваться с печатной платой, то понадобится макетная плата. Подойдёт плата небольшого размера, поищите варианты с джамперами и блоком питания — они бывают достаточно дешевы.
  5. Что-то для основания руки — я использовал банку от кофе, это не самый лучший вариант, но это всё, что я смог найти в квартире.
  6. Тонкая нить для механизма руки и иголка для проделывания отверстий.
  7. Клей и изолента, чтобы скрепить всё воедино. Нет ничего, что нельзя было бы скрепить изолентой и горячим клеем.
  8. Три резистора на 10K. Если у вас не найдётся резисторов, то в коде на такие случаи есть обходной манёвр, однако лучшим вариантом будет купить резисторы здесь.

Шаг 2: Как всё работает

На приложенном рисунке изображен принцип работы руки. Также я объясню всё на словах. Две части руки соединены тонкой нитью. Середина нити соединена с сервоприводом руки. Когда сервопривод тянет нить — рука сжимается. Я оснастил руку пружиной из шариковой ручки, но если у вас есть более гибкий материал, можете использовать его.

Шаг 3: Модифицируем джойстик

Предположив, что вы уже закончили сборку механизма руки, я перейду к части с джойстиком.

Для проекта использовался старый джойстик, но в принципе подойдёт любой устройство с кнопками. Аналоговые кнопки (грибы) используются для управления сервоприводами, так как по сути это просто потенциометры. Если у вас нет джойстика, то можете использовать три обычных потенциометра, но если вы, как и я, модифицируете старый джойстик своими руками, то вот что вам нужно сделать.

Я подключил потенциометры к макетной плате, у каждого из них есть по три клеммы. Одну из них нужно соединить с GND, вторую с +5V на Ардуино, а среднюю на вход, который мы определим позже. Мы не будем использовать ось Y на левом потенциометре, поэтому нам нужен только потенциометр над джойстиком.

Что касается переключателей, соедините +5V с одним его концом, а провод, который идёт на другой вход Ардуино со вторым концом. Мой джойстик имеет общую для всех переключателей линию на +5V. Я подключил всего 2 кнопки, но затем подключил еще одну, так как в ней появилась необходимость.

Также важно обрезать провода, которые идут к чипу (черный круг на джойстике). Когда вы завершите всё вышеописанное, можно приступить к проводке.

Шаг 4: Электропроводка нашего устройства

На фотографии изображена электропроводка устройства. Потенциометры — это рычажки на джойстике. Локоть (Elbow) — это правая ось Y, Основа (Base) — это правая ось X, Плечо (Shoulder) — это левая ось X. Если вам захочется поменять направление движения сервоприводов, просто смените положение проводов +5V и GND на соответствующем потенциометре.

Шаг 5: Загрузка кода

На этом этапе нам нужно скачать приложенный код на компьютер, а затем загрузить его на Ардуино.

Заметка: если до этого вы уже загружали код на Ардуино, то просто пропустите этот шаг — вы не узнаете ничего нового.

  1. Откройте ИДЕ Ардуино и вставьте в него код
  2. В Tools/Board выберите вашу плату
  3. В Tools/Serial Port выберите порт, к которому подключена ваша плата. Скорее всего, выбор будет состоят из одного пункта.
  4. Нажмите кнопку Upload.

Вы можете изменить диапазон работы сервоприводов, в коде я оставил заметки о том, как это осуществить. Скорее всего, код будет работать без проблем, вам нужно будет лишь поменять параметр сервопривода руки. Этот параметр зависит от того, как вы настроили нить, поэтому я рекомендую точно подобрать его.

Если вы не используете резисторы, то вам нужно будет модифицировать код в том месте, где я оставил об этом заметки.

Шаг 6: Запуск проекта

Робот контролируется движениями на джойстике, рука сжимается и разжимается при помощи кнопки для руки. На видео показано, как все работает в реальной жизни.

Вот способ, которым можно запрограммировать руку:

  1. Откройте Serial Monitor в Ардуино ИДЕ, это позволить проще следить за процессом.
  2. Сохраните начальную позицию, кликнув Save.
  3. За один раз двигайте лишь одним сервоприводом, например, Плечо вверх, и жмите save.
  4. Активируйте руку также только на её шаге, а затем сохраняйте нажатием save. Деактивация также производится на отдельном шаге с последующим нажатием save.
  5. Когда закончите последовательность команд, нажмите кнопку play, робот перейдёт в начальное положение и затем начнёт двигаться.
  6. Если вы захотите остановить его — отсоедините кабель или нажмите кнопку reset на плате Ардуино.

Если вы всё сделали правильно, то результат будет похож на этот!

Надеюсь, урок был вам полезен!

Рассказываю как сделать какую-либо вещь с пошаговыми фото и видео инструкциями.

Источник

Дешевый и полнофункциональный робот-манипулятор своими руками

Сразу оговоримся, что совсем дешево делать не будем, т.к. не хочется убивать нервные клетки, делая доморощенные энкодеры для моторчиков + хочется упростить создание 3D модели, которая нужна для управления через ROS (ссылка на готовую модель – ниже в статье).

На момент написания статьи ориентировочная конечная стоимость изделия составляет

70 000 руб. Если у вас есть 3D принтер, то можно смело вычесть из нее 20 000 руб. Если принтера нет, то его появление станет приятным бонусом. Все расходы я буду описывать исходя из того, что у нас нет ничего, кроме денег.

Как выглядит результат:

Также нужно отметить, что для программирования руки нам понадобится компьютер с установленными ОС Linux (я использую Ubuntu 18.04) и фреймворком ROS (я использую Melodic).

Может возникнуть вопрос «почему 70К рублей – это дешево?»

Отвечаю. Изначально я не хотел заморачиваться с созданием роборуки и думал просто купить что-нибудь простенькое, но достаточно функциональное в сборе.

Что являлось для меня критериями функциональности и минимальной допустимой простотой (т.е. почему НЕ подойдут манипуляторы с алиэкспресса) – можно обсудить в комментариях, чтобы не грузить тех, кому это очевидно и/или не интересно.

Конкурентные решения на рынке

Опишу, однако, кратко примеры того, что я рассматривал на рынке:

1) top3dshop.ru/robots/manipulators/dobot-magician-basic.html
176 000 руб. DOBOT можно купить не только в этом магазине, но обычно он стоит еще больше. Наверняка есть шанс найти его где-нибудь дешевле, но все равно это будет сильно дороже, чем 70 000 руб.

2) robotbaza.ru/product/robot-manipulyator-widowx-robotic-arm-mark-ii
280 000 руб. Еще дороже. Вообще, манипуляторы от TossenRobotics прямо у производителя стоят супервменяемых денег. Вот только доставку в Россию (а я-то именно тут) из их магазина не заказать.

Забегая немного вперед скажу, что делать мы будем копию робо-руки PhantomX Pincher Robot Arm Kit Mark II, которая производится именно компанией TossenRobotics.

Итого, видим, что 70 000 руб – это совсем не так дорого.

Что же нам нужно купить?

Все цены привожу на момент написания статьи (июль 2020 года):

1) 6 моторчиков DYNAMIXEL AX-12A

Я покупал по цене 7200 руб за 1 штуку, но, кажется, можно найти и за 6000 при большом желании. Будем считать, что вам не повезет и вы тоже купите за 7200.
Суммарная стоимость: 43 200 руб

Подойдет любой простенький, можно уложиться в 20 000 руб.

3) Arduino Uno + Power Shield

4) Опционально (но я очень рекомендую): Лабораторный источник питания

Сборка

Отлично! Мы закупили все, что нам нужно (вероятно, дольше всего ждали доставки моторчиков, мне их везли больше месяца).

1) Напечатаем детали для манипулятора на 3D принтере.

Качаем STL файлы отсюда

2) Собираем воедино с моторчиками. Проблем со сборкой быть не должно, но если они вдруг появятся, можно воспользоваться вот этой инструкцией

Делаем 3D модель

Класс! Рука у нас есть, но ведь ей же нужно как-то управлять. Хочется максимально использовать достижения человечества, поэтому установим себе ROS.

Для того, чтобы полноценно работать с манипулятором в ROS – нужно сделать его URDF модель. Она будет нам необходима для того, чтобы управлять робо-рукой с помощью пакета MoveIT!
На момент написания статьи последняя стабильная сборка доступна для Melodic/Ubuntu 18.04, чем и объясняется мой выбор версии системы и фреймворка в начале статьи.

Построение URDF модели – довольно трудоемкая (и, на мой взгляд, самая скучная) часть данного проекта. Нужно немного допилить напильником stl модели компонентов и соединить их воедино в XML-образном файле, вручную подбирая правильные коэффициенты смещения деталей друг относительно друга.

Кто хочет – может проделать работу самостоятельно, всем остальным поберегу нервы и просто дам ссылку на свой готовый файл:

В данной модели пока нет захватывающего устройства, однако, до того момента, чтобы захватывать предметы в реальном мире нам еще далеко. Для остальных задач этой модели более чем достаточно.

Выглядит модель вот так:

Из полученного URDF файла мы сделаем конфиг MoveIT!, который позволит нам моделировать движения манипулятора и отправлять управляющие команды на реальную робо-руку.

Для создания конфига есть отличный туториал (ссылка)

Тут я могу опять сэкономить время и предоставить свой конфиг. Лежит он вот тут:

Можно скачать конфиг с гитхаба и запустить следующей командой:

Примерно так можно будет управлять нашей реальной робо-рукой через rviz, когда мы подключим ее к ROS:

А что с реальной рукой?

Переместимся из мира 3D моделей в суровую реальность. У нас есть собранный ранее манипулятор. Хотелось бы его как-то подвигать. Сделаем это с помощью Arduino UNO и Power Shield.

Подключим первый моторчик манипулятора (который снизу) к Power Shield’у и блоку питания следующим образом:

Да, data pin моторчика мы соединим сразу с 3 и 4 выводом Arduino. Пытливый читатель мануала Dynamixel (вот он) сразу заметит, что связь с внешним миром у моторчика организована по Half Duplex Asynchronous Serial Communication, а это означает, что data pin используется сразу и для получения команд и для ответа.

По умолчанию, на аппаратном уровне Arduino умеет работать только с Full Duplex UART. Эту проблему можно обойти, используя Soft Serial библиотеку, что мы и сделаем. Именно использование Half Duplex режима объясняет подключение data pin мотора к 3 и 4 выводам шилда одновременно.

Помимо полудуплексного обмена работа с Dynamixel через Arduino имеет еще пару занимательных моментов, которые могут быть не совсем очевидны с самого начала. Сведем их все воедино.

Как подвигать наш манипулятор?

1) Сначала скачаем нужную библиотеку. Она называется ardyno и ее можно получить через Arduino Library Manager, либо тут (ссылка)

2) По умолчанию Dynamixel AX-12A хотят работать с baud rate = 1000000. Однако Software Serial Interface не потянет такую скорость, поэтому baud rate стоит снизить до 57600. Таким образом, начало файла с вашей программой будет выглядеть примерно вот так:

3) Все наши моторчики соединены друг с другом последовательно. Значит, чтобы обращаться к каждому из них — нужно знать его ID? Это действительно так, объект DynamixelMotor при инициализации получает два параметра: interface (одинаков для всех, его мы задали в предыдущем пункте) и id (должен быть у всех разный, иначе поведение будет у манипулятора весьма странное)

Id каждому моторчику придется задать вручную. Кажется, что будучи соединенными последовательно, они могли бы и сами рассчитаться по номерам от 1 до 6, но этого не предусмотрено. Поэтому нужно каждый моторчик отдельно подключить к Arduino (отключив от остальных) и выполнить следующую программу:

Изначально все моторчики имеют именно поэтому мы и указываем вверху

NEW_ID для каждого моторчика нужно заменить на число от 1 до 6 (да, ок, первый моторчик можно не трогать). Нумеруем их в порядке от нижнего к верхнему.

Ура! у нас есть полноценный манипулятор, который мы можем двигать, а также имеется 3D модель к нему. Можно брать ROS и программировать любые крутые штуки. Но это уже рассказ для отдельной статьи (и не одной). Данное же повествование подошло к концу, спасибо за внимание!

Источник

Adblock
detector