Подключение микрофона к Arduino
Микрофонный датчик звука, как следует из названия, фиксирует наличие звука и измеряет его громкость.
Существует большое разнообразие таких датчиков. На рисунке справа представлены лишь несколько простых аналоговых модулей, наиболее часто используемых с платформой Arduino.
Слева на фотографии — модуль микрофона KY-038, справа — модуль микрофона с компаратором LM393.
В модули обоих датчиков встроен потенциометр для регулировки чувствительности цифрового вывода.
Подключение микрофонного модуля
Подключение датчика к плате Arduino довольно простое:
Разъём | Подключение к Arduino |
A0 | Аналоговые разъёмы |
D0 | Цифровые разъёмы |
GND | GND |
VCC | 5 V |
Arduino_3.3 | NRF24_Vcc |
Arduino_GND | NRF24_GND |
Если вы используете модуль LM393, то необходимо подключить его вывод OUT (ВЫХОД) к цифровому выводу платы Arduino.
Компоненты, необходимые для проекта
В этом примере микрофонный датчик будет определять интенсивность звука окружающей обстановки, светодиод будет загораться если интенсивность звука превысит определённый порог.
Принципиальная схема подключения компонентов
Соедините элементы, как показано на нижеследующей схеме, созданной с помощью программы Fritzing (полный обзор программы по ссылке).
Код для подключения микрофона к Arduino
Далее нужно загрузить следующий код в плату Arduino.
Взаимодействие Arduino с датчиком звука и управление устройствами с помощью хлопков
Не хотите добавить в свой следующий проект возможность слышать? Эти звуковые датчики недороги, просты во взаимодействии и способны обнаруживать звуки голоса, хлопки или стук в дверь. Вы можете использовать их для различных проектов, реагирующих на звуки, например, чтобы активировать освещение.
Взаимодействие Arduino с датчиком звука и управление устройствами с помощью хлопков
Вы знаете, как работают электретные микрофоны?
Внутри микрофона находится тонкая диафрагма, которая на самом деле представляет собой одну из пластин конденсатора. Вторая пластина – это задняя стенка, которая расположена близко к диафрагме и параллельна ей.
Рисунок 1 – Работа электретного микрофона
Когда вы говорите в микрофон, звуковые волны, создаваемые вашим голосом, ударяют диафрагму, заставляя ее вибрировать.
Когда в ответ на звук диафрагма начинает вибрировать, по мере того, как пластины становятся ближе друг к другу или дальше друг от друга, начинает изменяться и емкость.
При изменениях емкости изменяется и напряжение на пластинах, что позволяет измерить амплитуду звука.
Обзор аппаратного обеспечения
Звуковой датчик представляет собой небольшую плату, которая объединяет микрофон (50 Гц – 10 кГц) и схему обработки для преобразования звуковых волн в электрические сигналы.
Этот электрический сигнал подается на встроенный высокоточный компаратор LM393 для его оцифровки и выводится на выход (вывод OUT).
Рисунок 2 – Регулировка чувствительности датчика звука и компаратора
Для регулировки чувствительности выходного сигнала модуль содержит встроенный потенциометр.
С помощью этого потенциометра вы можете установить пороговое значение. Таким образом, когда амплитуда звука превысит это пороговое значение, модуль выдаст низкий логический уровень, в остальных случаях будет выдаваться высокий логический уровень.
Эта настройка очень полезна, когда вы хотите запустить какое-то действие при достижении определенного порога. Например, когда амплитуда звука пересекает пороговое значение (при обнаружении стука), вы можете активировать реле для управления освещением. Вот вам идея!
Совет: поворачивайте движок потенциометра против часовой стрелки, чтобы увеличить чувствительность, и по часовой стрелке, чтобы ее уменьшить.
Рисунок 3 – Светодиодные индикаторы питания и состояния
Помимо этого, модуль имеет два светодиода. Индикатор питания загорится, когда на модуль подается напряжение питания. Светодиод состояния загорится, когда на цифровом выходе будет низкий логический уровень.
Распиновка звукового датчика
У данного датчика звука только три вывода:
Рисунок 4 – Распиновка модуля звукового датчика
Вывод VCC подает питание на датчик. Рекомендуется питать датчик напряжением от 3,3 до 5 В.
GND для подключения земли.
Вывод OUT выдает высокий логический уровень, когда тихо, и низкий логический уровень, когда обнаруживается звук. Вы можете подключить его к любому цифровому выводу Arduino или напрямую к 5-вольтовому реле или другому подобному устройству.
Подключение звукового датчика с Arduino
Давайте подключим звуковой датчик к Arduino. Подключение довольно простое. Для начала подключите вывод VCC на модуле к выводу 5V на Arduino, а вывод GND на модуле – к выводу GND Arduino. Теперь подключите вывод OUT к цифровому выводу 7 на Arduino. Вот и всё!
На следующем рисунке показана схема соединений.
Рисунок 5 – Подключение датчика звука к Arduino
Калибровка датчика звука
Для получения точных показаний с вашего звукового датчика, рекомендуется сначала его откалибровать.
Для калибровки цифрового выхода (OUT) модуль содержит встроенный потенциометр.
Поворачивая движок потенциометра, вы можете установить пороговое значение. Таким образом, когда уровень звука превышает пороговое значение, светодиод статуса загорается, а на цифровой выход (OUT) выдается низкий логический уровень.
Теперь, чтобы откалибровать датчик, хлопайте рядом с микрофоном и подстраивайте потенциометр, пока вы не увидите, что светодиод состояния на модуле мигает в ответ на ваши хлопки.
Теперь ваш датчик откалиброван и готов к использованию.
Простой пример: обнаружение звука
Теперь, когда всё подключено, вам понадобится скетч, чтобы проверить эту схему в работе.
Следующий пример обнаруживает хлопки или щелчки и выводит сообщение в мониторе последовательного порта. Попробуйте скетч в работе, а затем мы рассмотрим его подробнее.
Если всё в порядке, то при обнаружении хлопка вы должны увидеть вывод в мониторе последовательного порта, похожий на приведенный ниже.
Рисунок 6 – Вывод работы скетча обнаружения хлопков
Объяснение
Скетч начинается с объявления вывода Arduino, к которому подключен вывод OUT датчика.
Затем мы определяем переменную с именем lastEvent , которая хранит время с момента обнаружения хлопка. Это поможет нам устранить ложные срабатывания.
В функции setup() мы определяем сигнальный вывод, к которому подключен датчик, как входной. А также настраиваем последовательную связь с компьютером.
В функции loop() мы сначала читаем состояние цифрового вывода датчика.
Когда датчик обнаруживает какой-либо звук, достаточно громкий, чтобы пересечь пороговое значение, логический уровень выходного сигнала становится низким. Но мы должны убедиться, что звук вызван хлопками, а не случайным фоновым шумом. Итак, мы ждем 25 миллисекунд. Если логический уровень на выводе остается низким в течение более 25 миллисекунд, мы заявляем, что обнаружен хлопок.
Управление устройствами с помощью хлопков
В нашем следующем проекте мы будем использовать звуковой датчик в качестве «детектора хлопков», который включает устройства, питающиеся от сети переменного тока, хлопком в ладоши.
В данном проекте для управления питанием устройств используется одноканальный модуль реле, который будет коммутировать переменное напряжение сети 220 В.
Схема соединений
Схема соединений в этом проекте очень проста.
Предупреждение:
Данная схема взаимодействует с ВЫСОКИМ переменным напряжением сети 220 В. Неправильное подключение или использование может привести к серьезным травмам или смерти. Поэтому данный проект предназначен для людей, имеющих опыт работы и знающих о мерах техники безопасности при работе с высоким переменным напряжением.
Сначала необходимо подать питание на датчик и модуль реле. Подключите их выводы VCC к выводу 5V на Arduino, и выводы GND к выводу GND на Arduino.
Затем подключите выходной вывод (OUT) звукового датчика к цифровому выводу 7 на Arduino, а управляющий вывод (IN) на модуле реле к цифровому выводу 8 Arduino.
Вам также необходимо поместить модуль реле в линию питания устройства, которым вы хотите управлять. Вам придется разрезать один провод в кабеле питания и подключить один конец отрезанного провода (идущий от вилки) к выводу COM (общий) модуля реле, а другой к выводу NO (нормально разомкнутый).
Схема соединений показана на следующем рисунке.
Рисунок 7 – Схема подключения датчика звука и модуля реле к плате Arduino
Код Arduino
Ниже приведен скетч для управления устройствами с помощью хлопков.
После того, как вы загрузили программу в Arduino, и всё включили, датчик должен включать или выключать управляемое устройство каждый раз, когда вы хлопаете.
Объяснение
Если вы сравните этот скетч с предыдущим, вы заметите много общего, кроме нескольких вещей.
В начале мы объявляем вывод Arduino, к которому подключен вывод управления реле (IN). Мы также определили новую переменную relayState для хранения состояния реле.
В функции setup() мы настраиваем вывод relayPin как выходной.
Теперь, когда мы обнаруживаем звук хлопка, вместо того, чтобы печатать сообщение в мониторе последовательного порта, мы просто переключаем состояние реле.
Исправление проблем
Если датчик звука работает неправильно, попробуйте выполнить следующие действия.
- Дважды проверьте, что источник питания обеспечивает чистое напряжение питания. Поскольку звуковой датчик – это аналоговая схема, он более чувствителен к шуму, создаваемому блоком питания.
- Электретный микрофон в звуковом датчике также чувствителен к механическим вибрациям и шуму ветра. Установка с помощью эластичных/упругих материалов может помочь поглотить вибрацию.
- Диапазон чувствительности этого звукового датчика очень мал, возможно, всего 10 дюймов (примерно 25 см), поэтому, чтобы получить хорошую реакцию, вам нужно создавать шум намного ближе.
Как подключить датчик звука (микрофон) к Arduino
Подключим модуль с звуковым датчиком – микрофоном CMA-4544PF-W – к Arduino.
Инструкция по подключению датчика звука к Arduino
- Arduino UNO или иная совместимая плата;
- модуль с электретным капсюльным микрофоном CMA-4544PF-W или аналогичный;
- 3 светодиода (зелёный, жёлтый и красный, вот из такого набора, например);
- 3 резистора по 220 Ом (вот отличный набор резисторов самых распространённых номиналов);
- соединительные провода (рекомендую вот такой набор);
- макетная плата (breadboard);
- персональный компьютер со средой разработки Arduino IDE.
1 Электретный капсюльный микрофон CMA-4544PF-W
Электретный микрофон CMA-4544PF-W, который является основой модуля, реагирует на звуковые волны с частотами от 20 Гц до 20 кГц. Микрофон является всенаправленным, т.е. чувствителен к звуку, приходящему со всех направлений, с чувствительностью -44 дБ. Более подробно об устройстве и принципе действия электретных микрофонов можно почитать в статье «Устройство и принцип работы электретных микрофонов».
Электретный капсюльный микрофон CMA-4544PF-W и модуль с микрофоном
Мы воспользуемся готовым модулем, в котором присутствует микрофон, а также минимально необходимая обвязка. Приобрести такой модуль можно здесь.
2 Схема подключения микрофона к Arduino
Модуль содержит в себе электретный микрофон, которому необходимо питание от 3 до 10 вольт. Полярность при подключении важна. Подключим модуль по простой схеме:
- вывод «V» модуля – к питанию +5 вольт,
- вывод «G» – к GND,
- вывод «S» – к аналоговому порту «A0» Arduino.
Схема подключения электретного микрофона к Arduino
3 Скетч для считывания показаний электретного микрофона
Напишем программу для Arduino, которая будет считывать показания с микрофона и выводить их в последовательный порт в милливольтах.
Для чего может понадобиться подключать микрофон к Arduino? Например, для измерения уровня шума; для управления роботом: поехать по хлопку или остановиться. Некоторые даже умудряются «обучить» Arduino определять разные звуки и таким образом создают более интеллектуальное управление: робот будет понимать команды «Стоп» и «Иди» (как, например, в статье «Распознавание голоса с помощью Arduino»).
4 «Эквалайзер»на Arduino
Давайте соберём своеобразный простейший эквалайзер по приложенной схеме.
Схема «эквалайзера» на Arduino, датчике звука и светодиодах
5 Скетч «эквалайзера»
Немного модифицируем скетч. Добавим светодиоды и пороги их срабатывания.
Эквалайзер готов! Попробуйте поговорить в микрофон, и увидите, как загораются светодиоды, когда вы меняете громкость речи.
Полезный совет
Значения порогов, после которых загораются соответствующие светодиоды, зависят от чувствительности микрофона. На некоторых модулях чувствительность задаётся подстроечным резистором, на моём модуле его нет. Пороги получились 2100, 2125 и 2150 мВ. Вам для своего микрофона придётся определить их самим.