Реле для переменного тока arduino

Arduino и реле

Описание

Электромагнитное реле – универсальный способ коммутировать нагрузку. Универсальность в том, что реле имеет чисто механический контакт, то есть физически замыкает контакты. Это позволяет коммутировать нагрузку как переменного, так и постоянного тока в широком диапазоне напряжений: от 0 до сетевого, то есть 220 Вольт. По току производитель обещает 10 А, то есть можно коммутировать например 2 кВт обогреватель. Само реле напрямую к микроконтроллеру подключать нельзя, поэтому для управления силовая схема развязывается с логической, соответственно китайцы выпускают несколько типов модулей реле:

В наборе идёт красный модуль с настройкой логического уровня (жёлтый джампер-перемычка между буквами H и L). В центре – самый дешёвый модуль с минимальной обвязкой, высокого уровня. И справа – тоже неплохой модуль, но низкого уровня, что не всегда удобно использовать. Примечание: реле высокого уровня переключается при высоком сигнале на логический вход, а низкого – низком. Все модули реле имеют три пина на одном конце и три на другом:

Слева находятся пины питания и управления самого реле:

  • VCC (DC+, +) – питание
  • GND (DC-, -) – “земля”
  • IN (S) – логический управляющий сигнал

Справа находятся выходы самого реле, это одна контактная группа с переключением:

  • COM (Common) – общий контакт
  • NO (Normal Open) – нормально разомкнутый относительно COM контакт
  • NC (Normal Close) – нормально замкнутый относительно COM контакт

Работает это следующим образом: само реле (синяя коробочка на плате) питается от VCC и GND и подключается на питание схемы, так как реле потребляет около 60 мА при переключении. Но управляется реле логическим сигналом от микроконтроллера, который подаётся на пин IN. На выходе реле наблюдается следующая картина: у неактивного реле замкнуты контакты COM и NC. При активации реле контакт переключается и COM замыкается с NO.

Реле высокого уровня будет включаться и потреблять ток при подаче высокого сигнала (5, 3.3V), а низкого – при подаче низкого (GND, 0V). Чисто логически удобнее использовать реле высокого уровня: подали высокий сигнал – реле включилось. Мы кстати разбирали реле вот в этом уроке. И вот в этом:

Подключение

Примеры

Для активации реле достаточно подать высокий сигнал (для реле из набора) на логический вход. Для примера и проверки подойдёт и классический пример “мигания светодиодом”:

Источник

Подключение реле к Arduino Uno

Программа мигания светодиодом является, пожалуй, первой программой, которую пишут начинающие радиолюбители при изучении платформы Arduino. Эта программа очень проста и не требует подключения к плате Arduino каких-либо дополнительных устройств. Но если с помощью платы Arduino необходимо включать какое-либо достаточно мощное устройство, то здесь уже не обойтись без помощи реле.

В этой статье мы рассмотрим подключение реле к плате Arduino и мигание с ее помощью электрической лампой переменного тока. В этом проекте мы не будем использовать никакого специального драйвера для управления реле (например, ULN2003) – для этой цели мы будем использовать NPN транзистор.

Необходимые компоненты

  1. Плата Arduino Uno (купить на AliExpress).
  2. Реле на 5 или 6 В.
  3. Электрическая лампочка или другое устройство переменного тока.
  4. Транзистор BC547 (купить на AliExpress).
  5. Резистор 1 кОм (купить на AliExpress).
  6. Макетная или перфорированная плата.
  7. Соединительные провода.
  8. Источник питания.
  9. Диод 1n4007 (купить на AliExpress).
  10. Зажимные контакты или блок контактов.

Принцип работы реле

Реле представляет собой электромагнитный переключатель, которое управляется малым значением тока, но может переключать значительно большие токи. Например, реле удобно использовать для включения/выключения различных устройств, работающих от переменного тока, при этом используя для управления ими постоянный ток небольшой величины. Одним из наиболее часто используемых реле являются реле SPDT типа (Single Pole Double Throw — однополюсное на два направления), которое имеет пять контактов (выводов), как показано на следующем рисунке.

Когда на катушку (обмотку) реле не подано никакого управляющего напряжения, то общий провод реле (COM) подсоединен к нормально замкнутому контакту (NC — normally closed contact). А если на катушку реле подано управляющее напряжение, то с помощью электромагнита происходит переподключение общего провода реле (COM) на нормально разомкнутый контакт (NO — normally open contact), что позволяет в этой цепи коммутировать достаточно большой ток. Реле бывают различных типов, мы в нашем проекте использовали реле на 6V и 7A-250VAC.

Реле обычно подключается в электрическую схему с помощью специальной схемы драйвера, состоящей из транзистора, диода и резистора. Транзистор используется для усиления тока чтобы полный ток (в нашем случае от батарейки на 9 В) смог протекать через катушку реле и запитывать ее. Резистор используется чтобы обеспечить управляющий ток для транзистора, а диод используется для предотвращения протекания тока в обратном направлении, когда транзистор закрыт. Здесь дело в том, что при внезапном отключении тока катушка может вызывать противоположно направленное электромагнитное поле (согласно правилу Ленца), которое будет приводить к появлению тока в обратном направлении, способного повредить электронные компоненты. Поэтому для предотвращения подобного эффекта в схеме используется диод. Этот модуль драйвера реле можно легко купить в магазине электронных компонентов, либо собрать его самому на макетной или перфорированной плате.

В нашем случае мы будем управлять реле с контакта A0 платы Arduino с помощью схемы управления реле, показанной на следующем рисунке:

Работа схемы

Схема устройства представлена на следующем рисунке.

В этой схеме мы управляем реле с помощью платы Arduino через транзистор BC547. База транзистора подключена к контакту A0 платы Arduino через резистор 1 кОм. Электрическая лампочка переменного тока используется для демонстрации работы схемы – управления реле с помощью платы Arduino.

Исходный код программы

Принцип работы схемы достаточно прост – нам просто нужно подать на контакт A0 платы Arduino напряжение высокого уровня (логическую «1») когда мы хотим включить реле и напряжение низкого уровня (логический «0») когда мы хотим выключить реле. Соответственно, реле при этом будет замыкать и размыкать цепь электрической лампочки.

В программе мы будем переключать состояние контакта A0 платы Arduino с задержкой в 1 секунду:

Источник

Управление лампочкой от 220В на Arduino

Все знают, что выводы Arduino способны подавать напряжение в 3,3В или в 5В на подключенные к ним модули или датчики. К примеру, мы можем подключить к нашему микроконтроллеру датчики температуры и влажности, и дисплей — получится миниатюрная метеостанция с выводом данных на экран; или можем измерять расстояние до различных объектов при помощи датчика ультразвука. Однако, как быть с управлением освещением? Ведь питания от Arduino хватает на обычные светодиоды, но не на лампочки (будь то накаливания, энергосберегающие или светодиодные). Решим эту проблему, используя реле!

Начнем с того, что лампочки, о которых мы говорим в данной статье, питаются чаще всего от сети в 220В. Более того, тяжело представляется подключение лампочки напрямую к плате, ведь это будет чересчур непривычно по сравнению с подключением диодов.

Такая же проблема обычно и с подключением других устройств, которые получают питание от сети. На помощь приходит устройство под названием реле.

Стоят модули реле недорого, могут иметь от одного до нескольких каналов. Внизу на фото изображен одноканальный модуль реле, который уже готов к подключению его к Ардуино.

Данный модуль можно свободно подключать к Arduino, так как требует рабочего напряжения в 5 вольт, а вот уже коммутировать реле может несколько разных значений. Чаще всего они прописываются на корпусе: чаще всего это свободная коммутация до 10А 30V DC и 10A 250V AC.

Реле представляет собой управляемый переключатель, который по сигналу с Arduino переключает средний контакт между двумя крайними, таким образом, размыкая или замыкая цепь.

Для подключения к Arduino используются 3 контакта: два контакта питания (5В и Gnd) и контакт управления, который подключается к цифровому выводу на плате(например, к пину номер 3). На самом реле с другой стороны есть еще три контакта, но для подключения нагрузки (например лампочки) — к двумя из них подключатся контакты управления лампочкой, а другой остается свободным (внутри самого реле он связан с заземлением). Поэтому при включении реле, происходит замыкание контактов COM (общий) и NC (нормально замкнутый) и лампочка загорается, а при выключении реле замыкаются другие контакты — COM (общий) и NO (нормально разомкнутый). Не забывайте, что контакты лампочки должны быть подключены и к сети в 220В

Схема подключения изображена на картинке ниже:

После того, как собрали цепь, подключаем плату к компьютеру и загружаем следующий программный код (он очень простой):

Сначала мы устанавливаем переменную relPin, модуль реле подключается к пину 3. Далее устанавливается сигнал с реле как выходной.А в цикле программы у нас включается реле, через секунду выключается и через 3 секунды снова включается

И таким же образом можно управлять и другими устройствами. Теперь вы знаете, как подключить лампочку к Arduino через реле и можете программировать различные устройства на данной основе. Например, сделать автоматическое включение света с помощью датчика движения (при наличии движения включается свет) или с помощью датчика света (когда стало темно, то включился свет) и т.д.

К минусам данного типа реле можно отнести большое потребление тока, малую живучесть при больших нагрузках и возможное залипание контактов, если была подключена большая нагрузка (например кипятильник или что-то подобное)

Таких недостатков не будет иметь твердотельное реле: там вместо катушки находится полупроводник.

На этой данная статья подходит к концу. Всем спасибо за внимание и удачной компиляции! :)

Купить компоненты, используемые в статье, вы можете на нашем сайте: Амперкот.ру

Источник

Ардуино: модуль реле

Мы уже знаем как управлять слабым светодиодом и даже мощным двигателем с помощью Ардуино. Но как быть, если мы задумаем управлять устройствами, подключенными к бытовой сети? Напомню, что даже небольшая настольная лампа питается от источника переменного тока с напряжением 220 Вольт. Обычный полевой транзистор, который мы использовали в схеме с двигателем уже не подойдет.

Чтобы управлять мощной нагрузкой да еще и с переменным током воспользуемся реле. Это такое электромеханическое устройство, которое механическим способом замыкает цепь нагрузки с помощью электромагнита. Посмотрим на внутренности:

Принцип действия реле следующий. Подаем напряжение на электромагнитную катушку. В катушке возникает поле, которое притягивает металлическую лапку. В свою очередь, лапка механически замыкает контакты нагрузки.

У реле есть два основных применения. Во-первых, мы можем подав всего 5 Вольт на катушку, замкнуть цепь очень мощной нагрузки. Например, реле, используемое в уроках для Ардуино, может включить свет в доме или отключить забытый утюг. Во-вторых, некоторые виды реле могут одновременно замкнуть и разомкнуть сразу несколько разных цепей с разным напряжением.

Подключение реле к Ардуино

На этом уроке мы будем работать не с отдельным реле, а с целым релейным модулем. Помимо самого реле, модуль содержит еще и оптоэлектронную развязку с транзистором, которые защищают выводы Ардуино от скачков напряжения на катушке.

У одинарного модуля реле есть всего три контакта. Подключим их по следующей схеме.

Реле GND VCC In
Ардуино Уно GND +5V 3

Кстати, вход реле является инвертированным. Это означает, что высокий уровень на контакте In выключит катушку реле, а низкий уровень — включит.

Принципиальная схема

Внешний вид макета

Программа для Ардуино

Напишем простую программу, которая будет включать лампу на 3 секунды, а затем гасить на 1 секунду.

Загружаем программу на Ардуино. Теперь подключаем питание к лампе и к реле. Наконец, подаем питание на контроллер.

Автоматический светильник или уличный фонарь

С помощью контроллера, реле и датчика света можно сделать несложный автоматический светильник. Контроллер будет зажигать лампу в момент, когда уровень света на датчике станет меньше заданного значения.

В качестве датчика используем готовый модуль на основе фоторезистора. Подключим все три устройства по следующей схеме.

Принципиальная схема

Внешний вид макета

Программа автоматического светильника

Аналоговый вывод датчика дает значения в диапазоне от 0 до 1023. Причем, 0 — для максимального уровня света и 1023 для полной темноты.

Сначала нам нужно определиться при каком уровне света включать лампу, а при каком выключать. В нашей лаборатории при свете дня датчик показывает значение L = 120, а ночью около L = 700. Будем включать реле при L > 600, и выключать при L

Ардуино: модуль реле : 8 комментариев

А какой резистор преобразует напряжение в 3 вольта?

Источник