Распиновка кнопки arduino

Arduino.ru

Подключение кнопки

В этом примеры мы рассмотрим подключение кнопки к контроллеру Arduino. При нажатие кнопки мы будем зажигать встроенный светодиод. Большинство плат Arduino имеют встроенный SMT светодиод, подключенный к выходу 13 (pin 13).

Необходимые компоненты

  • контроллер Arduino
  • тактовая кнопка
  • 10кОм резистор
  • контактная макетная плата
  • соединительные провода

Подключение

Подключаем выход питания (5V) и землю (Gnd), красным и черным проводом соответственно к макетной плате. Обычно на макетных платах для питания и земли используют крайние ряды контактов, как показано на рисунке. Третьим синим проводом мы соединяем цифровой пин 2 контроллера Arduino к контакту тактовой кнопки. К этому же контакту, либо к контакту, постоянно соединенному с ней в 4х штырковом исполнении, подключаем подтягивающий резистор 10 кОм, который в свою очередь соединяем с землей. Другой выход кнопки соединяем с питанием 5 В.

Когда тактовая кнопка не нажата, выход 2 подключен только к земле через подтягивающий резистор и на этом входе будет считываться LOW. А когда кнопка нажата появляется контакт между входом 2 и питанием 5В, и считываться будет HIGH.

Замечание: Чаще всего тактовые кнопки имеют по два контакта с каждой стороны так, как это показано на рисунке подключение. При этом по форме кнопка почти квадратная. ВАЖНО не перепутать при подключении какие контакты соединены, а какие замыкаются при нажатие. Лучше всего прозвонить кнопку если не уверены.

Можно также подключить кнопку наоборот — через подтягивающий резистор к питанию и через кнопку к земле. Тогда с входа будет считваться HIGH, а при нажатие кнопки LOW.

Если вход оставить неподключенным, то на входе будет считываться HIGH или LOW случайным образом. Именно поэтому мы используем подтягивающий резистор, чтобы задать определенное значение при ненажатой кнопке.

Источник

Ардуино: кнопки

Кнопка — всем известное механическое устройство, которое может замыкать и размыкать электрическую цепь по желанию человека. Есть множество видов кнопок, работающих по разным правилам. Например, тактовая кнопка (push button), используемая в этом уроке, замыкает цепь только пока палец давит на неё. Кнопка на размыкание, напротив, разрывает цепь при нажатии.

Есть кнопки с группой контактов, одни из которых рвут цепь при нажатии, а другие в это время замыкают. Маленькие версии таких кнопок часто называют микропереключателями.

Тактовые кнопки, можно найти практически в каждом электронном приборе: в клавиатуре компьютера, в телефоне, в пульте от телевизора, и т.д.

Есть кнопки с фиксацией, работающие как кнопка на шариковой ручке: один раз нажали — цепь замкнулась, второй раз — разорвалась. На фото ниже как раз одна из таких. Кнопки с фиксацией удобно использовать для переключения режима работы устройства. Например, можно переключать источник питания: батарея, или блок питания.

Или другой вариант — большие кнопки для экстренной остановки оборудования. Они окрашены в яркие цвета, чтобы привлекать внимание человека. По сути — обычные тактовые кнопки на размыкание, или кнопки с фиксацией.

Это лишь некоторые варианты. Кроме кнопок, в мире электричества есть и другие механизмы, например, тумблеры и рубильники. Все они призваны механически управлять течением тока в цепи.

Подключение кнопки

Итак, мы будем работать с самой простой тактовой кнопкой, которую попробуем подключить к Ардуино Уно. Обычно, при работе с беспаечными макетными платами используется кнопка с выводами под пайку. На фото в начале урока видно, что у такой кнопки есть четыре немного загнутых вывода. Есть кнопки и с двумя прямыми выводами, они тоже подходят для наших занятий.

На электрических схемах кнопка изображается так:

Если посмотреть внутрь четырехтактной кнопки, то можно увидеть вот такую схему:

Как правило, выводы тактовой кнопки размещаются на противоположных сторонах корпуса парами. То есть мы можем использовать либо пару контактов на одной стороне, либо пару на другой.

А вот так выглядит схема двухконтактной кнопки.

С этой кнопкой сложно запутаться: два контакта, которые соединяются при нажатии кнопки.

На макетной плате оба типа тактовых кнопок обычно ставятся следующим образом:

Теперь попробуем собрать на беспаечной макетной плате самую простую цепь, которая продемонстрирует работу кнопки. Будем зажигать светодиод.

Полученная схема выполняет нехитрую функцию: нажимаем на кнопку — светодиод зажигается, отпускаем — гаснет.

Подключение к Ардуино Уно

Теперь, когда функция тактовой кнопки предельно ясна, соберем схему с кнопкой и светодиодом, и подключим их к контроллеру. Поставим перед собой простую задачу: пусть при однократном нажатии кнопки Ардуино Уно мигнет три раза светодиодом.

Принципиальная схема

Внешний вид макета

На этой схеме мы видим уже привычную цепь для зажигания светодиода. Также видим кнопку, соединенную с выводом Ардуино №3. Здесь может вполне резонно возникнуть вопрос: зачем мы соединили кнопку ещё и с землей, через резистор 10кОм? Чтобы разобраться с этим вопросом, представим что мы подключили кнопку по «наивной» схеме без всяких дополнительных резисторов.

Здесь между выводом №3 и землей изображен небольшой конденсатор, который способен накапливать заряд. Такая особенность есть у многих микроконтроллеров.

Теперь представим, что мы замыкаем кнопку. Ток начинает бежать от +5В, прямиком в контакт №3, попутно заряжая ёмкость. Ардуино успешно регистрирует нажатие кнопки. Но после того, как мы убираем палец с тактовой кнопки, вопреки нашим ожиданиями, микроконтроллер продолжает считать что кнопка нажата! Еще бы, ведь заряженный конденсатор постепенно отдает накопленный заряд в ногу №3. Это будет продолжаться до тех пор, пока ёмкость не разрядится ниже уровня логической единицы.

Чтобы такого не случилось и нужен так называемый стягивающий резистор (или подтягивающий к земле). При замыкании кнопки ток пойдет по пути наименьшего сопротивления, то есть на вывод №3. А вот как только кнопка будет отжата, паразитная ёмкость мгновенно разрядится на землю, через резистор.

Подключение модуля тактовых кнопок ROC к Ардуино

Специально для ваших проектов мы в RobotClass сделали модуль из двух тактовых кнопок. На модуле уже есть необходимые резисторы и даже два светодиода для индикации нажатия кнопок.

Разберемся с подключением этого модуля к Ардуино Уно.

Принципиальная схема

Внешний вид макета

Как можно было заметить, независимо от того, какие всё-таки кнопки мы будем использовать — схема подключения не сильно меняется. Не будет менять и программа для работы с ними.

Программа для работы с кнопкой на Ардуино

Наконец, мы разобрались с нюансами нашей схемы, и готовы к написанию программы. В уроке по зажиганию светодиода мы познакомились с функциями настройки выводов pinMode и функцией вывода в цифровой порт digitalWrite. На этот раз нам понадобится ещё одна важная функция, которая обеспечивает ввод информации в микроконтроллер:

Эта функция возвращает логическое значение, которое Ардуино считала с заданного контакта. Это означает, что если на контакт подать напряжение +5В, то функция вернет истину*. Если контакт соединить с землей, то получим значение ложь. В языке C++, истина и ложь эквивалентны числам 1 и 0 соответственно.

Для того, чтобы интересующий нас контакт заработал в режиме ввода информации, нам нужно будет установить его в определенный режим:

Наконец, соберем всё вместе, и напишем программу.

Загружаем программу на Ардуино Уно, и проверяем работу программы. Если всё сделано правильно, должно получиться как на картинке:

Ну вот и всё. Теперь мы можем управлять нашими устройствами при помощи кнопок. Если вы уже прошли урок по подключению ЖК дисплея, то мы вполне сможем сделать часы с будильником!

Программа для кнопки-триггера

Еще один пример, заслуживающий внимания — кнопка-триггер. Работает она так: один раз нажали кнопку — светодиод загорелся, второй раз нажали — потух.

Чтобы реализовать такое поведение кнопки, нам потребуется дополнительная переменная, которую часто называют «переменной состояния» или «флагом».

Загружаем программу на Ардуино и проверяем работу схемы. Быстро нажмем кнопку — светодиод зажжется. Снова нажмем — погаснет. А вот если нажать кнопку и не отпускать, то светодиод начнет мигать с периодом 600мс! Почему так? Попробуйте разобраться.

Задания

В качестве тренировки попробуем решить несколько простых задачек с кнопкой и светодиодом.

  • В схеме присутствует две кнопки и один светодиод. Пусть при нажатии на первую кнопку светодиод зажигается, а при нажатии на вторую — гаснет.
  • Пианино. В схеме присутствует семь кнопок кнопка и один динамик. При нажатии на каждую из семи кнопок динамик должен воспроизводить соответствующую ноту. Потребуется изучить урок про динамик.
  • Игра «Ковбои». В схеме присутствуют две кнопки, один зуммер и два светодиода. После запуска программы зуммер должен издать короткий звук. Сразу после этого, каждый из игроков должен как можно быстрее нажать свою кнопку. У того игрока, который сделает это первым, загорится светодиод. Потребуется изучить урок про прерывания.

Источник

Как подключить кнопку к Arduino

Кажется, что может быть проще, чем подключить кнопку? Тем не менее, и тут есть свои подводные камни. Давайте разберёмся.

Инструкция по подключению кнопки к Arduino

  • Arduino UNO или иная совместимая плата;
  • тактовая кнопка;
  • резистор 10 кОм (вот отличный набор резисторов с основными номиналами от 10 Ом до 10 МОм);
  • макетная плата (breadboard);
  • соединительные провода (рекомендую вот такой набор);
  • персональный компьютер со средой разработки Arduino IDE.

1 Виды кнопок

Кнопки бывают разные, но все они выполняют одну функцию – физически соединяют (или, наоборот, разрывают) между собой проводники для обеспечения электрического контакта. В простейшем случае – это соединение двух проводников, есть кнопки, которые соединяют большее количество проводников.

Виды кнопок, их внешний вид и обозначение на электрической схеме

Некоторые кнопки после нажатия оставляют проводники соединёнными (фиксирующиеся кнопки), другие – сразу же после отпускания размыкают цепь (нефиксирующиеся кнопки).

Также кнопки делят на:

  • нормально разомкнутые,
  • нормально замкнутые.

Первые при нажатии замыкают цепь, вторые – размыкают.

Сейчас нашёл широкое применение тип кнопок, которые называют «тактовые кнопки». Тактовые – не от слова «такт», а от слова «тактильный», т.к. нажатие хорошо чувствуется пальцами. Но этот ошибочный термин устоялся, и теперь эти кнопки у нас повсеместно так называют. Это кнопки, которые при нажатии замыкают электрическую цепь, а при отпускании – размыкают, т.е. это нефиксирующиеся, нормально разомкнутые кнопки.

2 Дребезг контактов

Кнопка – очень простое и полезное изобретение, служащее для лучшего взаимодействия человека и техники. Но, как и всё в природе, она не идеальна. Проявляется это в том, что при нажатии на кнопку и при её отпускании возникает т.н. «дребезг» («bounce» по-английски). Это многократное переключение состояния кнопки за короткий промежуток времени (порядка нескольких миллисекунд), прежде чем она примет установившееся состояние. Это нежелательное явление возникает в момент переключения кнопки из-за упругости материалов кнопки или из-за возникающих при электрическом контакте микроискр.

Дребезг контактов в момент нажатия и отпускания кнопки

В следующей статье подробно описаны основные способы борьбы с «дребезгом» при замыкании и размыкании контактов. А пока что рассмотрим варианты подключения кнопки к Arduino.

3 Некорректное подключение кнопки

Чтобы подключить нормально разомкнутую тактовую кнопку к Arduino, можно поступить самым простым способом: один свободный проводник кнопки соединить с питанием или землёй, другой – с цифровым выводом Arduino. Но, вообще говоря, это неправильно. Дело в том, что в моменты, когда кнопка не замкнута, на цифровом выводе Ардуино будут появляться электромагнитные наводки, и из-за этого возможны ложные срабатывания.

Неправильное подключение кнопки к Arduino

Чтобы избежать наводок, цифровой вывод обычно подключают через достаточно большой резистор (10 кОм) либо к земле, либо к питанию. В первом случае это называется «схема с подтягивающим резистором», во втором – «схема со стягивающим резистором». Давайте рассмотрим каждую из них.

4 Подключение кнопки по схеме с подтягивающим резистором

Сначала подключим к Arduino кнопку по схеме с подтягивающим резистором. Для этого один контакт кнопки соединим с землёй, второй – с цифровым выходом «2». Цифровой выход «2» также подключим через резистор номиналом 10 кОм к питанию +5 В.

Схема подключения кнопки к Arduino по схеме с подтягивающим резистором

Напишем вот такой скетч для обработки нажатий на кнопку и загрузим в Arduino.

Встроенный светодиод на выводе «13» постоянно горит, пока не нажата кнопка. Т.е. на порте «2» Arduino всегда присутствует высокий логический уровень HIGH. Когда нажимаем кнопку, напряжение на «2» порте принимает состояние LOW, и светодиод гаснет.

5 Подключение кнопки по схеме со стягивающим резистором

Теперь соберём схему со стягивающим резистором. Один контакт кнопки соединим с питанием +5 В, второй – с цифровым выходом «2». Цифровой выход «2» подключим через резистор номиналом 10 кОм к земле. Скетч менять не будем.

Подключение кнопки к Arduino по схеме со стягивающим резистором

При включении схемы на цифровом порте «2» Arduino низкий уровень LOW, и светодиод не горит. При нажатии на кнопку на порт «2» поступает высокий уровень HIGH, и светодиод загорается.

Источник

Подключение кнопки к Arduino. GyverButton v3.8

ОБНОВЛЕНИЯ

  • v3.6: добавлен отдельный класс для работы с аналоговыми клавиатурами, см пример analogKeyboardG
  • v3.7: исправления от Dryundel:
    • Любой таймаут удержания
    • Single, Double и Triple теперь не мешают hasClicks и getClicks и работают совместно
    • isStep() тоже теперь ничего не мешает и он работает более корректно
  • v3.8: исправления от Dryundel

ТЕОРИЯ

На сайте есть отдельный подробный урок по работе с кнопками.

Кнопка – простейший орган управления микроконтроллером. Подключить кнопку к Arduino очень просто, но нужно помнить, что пин должен иметь два стабильных состояния – высокое и низкое, GND или VCC. Для этого пин кнопки подтягивают резистором

10 кОм противоположно подключению кнопки, т.е. если кнопка подключена второй ногой к GND, пин подтягивают к VCC, и наоборот.

Микроконтроллер имеет “встроенную” подтяжку ног к VCC, что даёт возможность подключать кнопку только к GND и пину, но режим работы пина нужно выбрать INPUT_PULLUP. Я, например, всегда подключаю отладочную кнопку на D3 вот таким образом:

Также можно подключить несколько кнопок к аналоговому пину, получится так называемая аналоговая клавиатура. Значение функции analogRead() будет зависеть от нажатой кнопки.

БИБЛИОТЕКА

GyverButton v3.8

Для удобной и многофункциональной работы с кнопкой я написал библиотеку GyverButton. Что она умеет:

  • Работа с нормально замкнутыми и нормально разомкнутыми кнопками
  • Работа с подключением PULL_UP и PULL_DOWN Опрос кнопки с программным антидребезгом контактов (настраиваемое время)
  • Отработка нажатия, удерживания, отпускания, клика по кнопке (+ настройка таймаутов)
  • Отработка одиночного, двойного и тройного нажатия (вынесено отдельно)
  • Отработка любого количества нажатий кнопки (функция возвращает количество нажатий)
  • Функция изменения значения переменной с заданным шагом и заданным интервалом по времени
  • Возможность работы с “виртуальными” кнопками (все возможности библиотеки используются для матричных и резистивных клавиатур)

Поддерживаемые платформы: все Arduino (используются стандартные Wiring-функции)

Версия 3.5: значительно увеличена производительность для AVR Ardiuno плат

Источник

Распиновка кнопки ардуино

Arduino.ru

Подключение кнопки

В этом примеры мы рассмотрим подключение кнопки к контроллеру Arduino. При нажатие кнопки мы будем зажигать встроенный светодиод. Большинство плат Arduino имеют встроенный SMT светодиод, подключенный к выходу 13 (pin 13).

Необходимые компоненты

  • контроллер Arduino
  • тактовая кнопка
  • 10кОм резистор
  • контактная макетная плата
  • соединительные провода

Подключение

Подключаем выход питания (5V) и землю (Gnd), красным и черным проводом соответственно к макетной плате. Обычно на макетных платах для питания и земли используют крайние ряды контактов, как показано на рисунке. Третьим синим проводом мы соединяем цифровой пин 2 контроллера Arduino к контакту тактовой кнопки. К этому же контакту, либо к контакту, постоянно соединенному с ней в 4х штырковом исполнении, подключаем подтягивающий резистор 10 кОм, который в свою очередь соединяем с землей. Другой выход кнопки соединяем с питанием 5 В.

Когда тактовая кнопка не нажата, выход 2 подключен только к земле через подтягивающий резистор и на этом входе будет считываться LOW. А когда кнопка нажата появляется контакт между входом 2 и питанием 5В, и считываться будет HIGH.

Замечание: Чаще всего тактовые кнопки имеют по два контакта с каждой стороны так, как это показано на рисунке подключение. При этом по форме кнопка почти квадратная. ВАЖНО не перепутать при подключении какие контакты соединены, а какие замыкаются при нажатие. Лучше всего прозвонить кнопку если не уверены.

Можно также подключить кнопку наоборот — через подтягивающий резистор к питанию и через кнопку к земле. Тогда с входа будет считваться HIGH, а при нажатие кнопки LOW.

Если вход оставить неподключенным, то на входе будет считываться HIGH или LOW случайным образом. Именно поэтому мы используем подтягивающий резистор, чтобы задать определенное значение при ненажатой кнопке.

Источник

Работа с кнопками

Кнопка является простейшим устройством, при помощи которого можно управлять ходом программы на микроконтроллере, но физически она выполняет очень простую функцию: замыкает и размыкает контакт. Кнопки бывают нескольких типов:

  • С фиксацией – кнопка остаётся нажатой после отпускания, без фиксации – отключается обратно.
  • Нормально разомкнутая (Normal Open, NO) – при нажатии замыкает контакты. Нормально замкнутая (Normal Closed, NC) – при нажатии размыкает контакты.
  • Тактовые кнопки – замыкают или размыкают контакт. У обычных тактовых кнопок ноги соединены вдоль через корпус (см. картинку ниже). Переключатели – обычно имеют три контакта, общий COM, нормально открытый NO и нормально закрытый NC. При отпущенной кнопке замкнута цепь COM-NC, при нажатой замыкается COM-NO.

Подключение и подтяжка

Из урока про цифровые пины вы помните, что микроконтроллер может считывать напряжение со своей ноги. Соответственно кнопка может подать на пин тот уровень, к которому подключена её вторая нога. В том же уроке мы обсуждали, что не подключенный никуда цифровой пин принимает наводки из воздуха, и считанное с него значение будет практически случайным. То есть подключив к пину 5V (сигнал высокого уровня) через кнопку, мы ничего не добьёмся: при нажатой кнопке на пине будет считываться четкий сигнал высокого уровня, а при отпущенной – случайное значение. Для решения этой проблемы существует такое понятие, как подтяжка (pull) пина. Подтяжка выполняется к земле (pull down) или питанию (pull up) микроконтроллера при помощи резистора. Подтяжка выполняется противоположно принимаемому сигналу, т.е. если нужно ловить высокий сигнал, подтяжка выполняется к земле, если ловить нужно сигнал земли – подтяжка выполняется к питанию. Вот два варианта подключения кнопки, с подтяжкой к VCC и GND соответственно: Как выбирается сопротивление резистора? Тут всё очень просто: при нажатии на кнопку через резистор потечёт ток, так как в любом случае замыкается цепь питание-земля. Чем выше ток, больше потери энергии и нагрев резистора, а это никому не нужно, поэтому сопротивление резистора подтяжки обычно выбирается в диапазоне 5-50 кОм. Если ставить больше – подтяжка может не обеспечить стабильный уровень сигнала на пине, а если ставить меньше – будут больше потери энергии в нагрев резистора: при сопротивлении в 1 ком через него потечёт ток величиной 5 В/1000 Ом = 5 мА, для сравнения плата Ардуино с МК в активном режиме потребляет 20-22 мА. Чаще всего для подтяжки используется резистор на 10 кОм. Как вы помните из урока о цифровых пинах, у МК AVR есть встроенные резисторы для всех GPIO, эти резисторы подключены к питанию (к VCC), то есть буквально дублируют первую схему из этого урока и позволяют не использовать внешний резистор. У микроконтроллеров другой архитектуры бывает подтяжка к GND, или вообще может не быть внутренней подтяжки. При использовании подтяжки к питанию мы получим инвертированный сигнал – функция digitalRead() вернёт 1 при отпущенной кнопке, и 0 при нажатой (при использовании нормально-разомкнутой кнопки). Давайте подключим кнопку на пин D3 (и GND):

Алгоритмы

Отработка нажатия

В большинстве реальных применений работать с текущим состоянием кнопки очень неудобно, например когда действие должно быть выполнено однократно при нажатии на кнопку, т.е. по клику. Чуть усложним конструкцию, добавив один флаг, который будет помнить состояние кнопки. Такая конструкция позволяет отслеживать нажатие и отпускание кнопки и реагировать на них однократно:

Дребезг контактов

Кнопка не идеальна, и контакт замыкается не сразу, какое-то время он “дребезжит”. Прогоняя данный алгоритм, система опрашивает кнопку и условия приблизительно за 6 мкс, то есть кнопка опрашивается 166’666 раз в секунду! Этого достаточно, чтобы получить несколько тысяч ложных срабатываний. Избавиться от дребезга контактов можно как аппаратно, так и программно: аппаратно задача решается при помощи RC цепи, то есть резистора (

1-10k) и конденсатора (

100nF). Выглядит это следующим образом:

Программно можно ввести простейший таймер нажатия, основанный на millis() , время гашения дребезга примем 100 миллисекунд. Вот так будет выглядеть код:

Рекомендуется конечно же использовать аппаратный способ, так как он не нагружает ядро лишними расчетами. В 99.99% проектов будет достаточно программного антидребезга, так то смело используйте конструкцию с millis() .

“Импульсное” удержание

В устройствах с управлением кнопкой очень часто бывает нужна возможность изменения значения как однократно кликом по кнопке, так и “автоматически” с тем же шагом – при удержании. Такой вариант реализуется очень просто, добавлением ещё одного условия в наш предыдущий алгоритм, а именно: если кнопка была нажата, но ещё не отпущена, и прошло времени больше, чем задано – условие вернёт true . В примере ниже периодичность “нажатий” при удержании настроена на 500 миллисекунд (2 раза в секунду):

Пользоваться таким кодом напрямую будет неудобно, поэтому можно “обернуть” его в класс (читай урок про классы и урок про написание библиотек).

Простейший класс кнопки

Вот так предыдущий пример можно сделать классом (мы делали это вот в этом уроке), положить его в отдельный файл (button.h) и пользоваться:

Другие возможности кнопки

Кнопка только с виду кажется простым устройством, дающим 0 и 1, но, подключив фантазию и время, можно придумать гораздо больше применений обычной кнопке. В моей библиотеке GyverButton реализовано очень много всяких интересных возможностей по работе с кнопкой, вот список:

  • Работа с нормально замкнутыми и нормально разомкнутыми кнопками
  • Работа с подключением PULL_UP и PULL_DOWN Опрос кнопки с программным антидребезгом контактов (настраиваемое время)
  • Отработка нажатия, удерживания, отпускания, клика по кнопке (+ настройка таймаутов)
  • Отработка одиночного, двойного и тройного нажатия (вынесено отдельно)
  • Отработка любого количества нажатий кнопки (функция возвращает количество нажатий)
  • Функция изменения значения переменной с заданным шагом и заданным интервалом по времени
  • Возможность работы с “виртуальными” кнопками (все возможности библиотеки используются для матричных и резистивных клавиатур)

Подробное описание библиотеки можно почитать в заголовочном файле на странице библиотеки, также там есть много примеров.

Аналоговые клавиатуры

Аналоговые клавиатуры – достаточно глубокая тема, достойная отдельного урока (у меня его пока что нет). Максимально подробный урок-исследование можно посмотреть на сайте Codius.

Видео


Источник

Как подключить кнопку к Arduino

Кажется, что может быть проще, чем подключить кнопку? Тем не менее, и тут есть свои подводные камни. Давайте разберёмся.

Инструкция по подключению кнопки к Arduino

  • Arduino UNO или иная совместимая плата;
  • тактовая кнопка;
  • резистор 10 кОм (вот отличный набор резисторов с основными номиналами от 10 Ом до 10 МОм);
  • макетная плата (breadboard);
  • соединительные провода (рекомендую вот такой набор);
  • персональный компьютер со средой разработки Arduino IDE.

1 Виды кнопок

Кнопки бывают разные, но все они выполняют одну функцию – физически соединяют (или, наоборот, разрывают) между собой проводники для обеспечения электрического контакта. В простейшем случае – это соединение двух проводников, есть кнопки, которые соединяют большее количество проводников.

Виды кнопок, их внешний вид и обозначение на электрической схеме

Некоторые кнопки после нажатия оставляют проводники соединёнными (фиксирующиеся кнопки), другие – сразу же после отпускания размыкают цепь (нефиксирующиеся кнопки).

Также кнопки делят на:

  • нормально разомкнутые,
  • нормально замкнутые.

Первые при нажатии замыкают цепь, вторые – размыкают.

Сейчас нашёл широкое применение тип кнопок, которые называют «тактовые кнопки». Тактовые – не от слова «такт», а от слова «тактильный», т.к. нажатие хорошо чувствуется пальцами. Но этот ошибочный термин устоялся, и теперь эти кнопки у нас повсеместно так называют. Это кнопки, которые при нажатии замыкают электрическую цепь, а при отпускании – размыкают, т.е. это нефиксирующиеся, нормально разомкнутые кнопки.

2 Дребезг контактов

Кнопка – очень простое и полезное изобретение, служащее для лучшего взаимодействия человека и техники. Но, как и всё в природе, она не идеальна. Проявляется это в том, что при нажатии на кнопку и при её отпускании возникает т.н. «дребезг» («bounce» по-английски). Это многократное переключение состояния кнопки за короткий промежуток времени (порядка нескольких миллисекунд), прежде чем она примет установившееся состояние. Это нежелательное явление возникает в момент переключения кнопки из-за упругости материалов кнопки или из-за возникающих при электрическом контакте микроискр.

Дребезг контактов в момент нажатия и отпускания кнопки

В следующей статье подробно описаны основные способы борьбы с «дребезгом» при замыкании и размыкании контактов. А пока что рассмотрим варианты подключения кнопки к Arduino.

3 Некорректное подключение кнопки

Чтобы подключить нормально разомкнутую тактовую кнопку к Arduino, можно поступить самым простым способом: один свободный проводник кнопки соединить с питанием или землёй, другой – с цифровым выводом Arduino. Но, вообще говоря, это неправильно. Дело в том, что в моменты, когда кнопка не замкнута, на цифровом выводе Ардуино будут появляться электромагнитные наводки, и из-за этого возможны ложные срабатывания.

Неправильное подключение кнопки к Arduino

Чтобы избежать наводок, цифровой вывод обычно подключают через достаточно большой резистор (10 кОм) либо к земле, либо к питанию. В первом случае это называется «схема с подтягивающим резистором», во втором – «схема со стягивающим резистором». Давайте рассмотрим каждую из них.

4 Подключение кнопки по схеме с подтягивающим резистором

Сначала подключим к Arduino кнопку по схеме с подтягивающим резистором. Для этого один контакт кнопки соединим с землёй, второй – с цифровым выходом «2». Цифровой выход «2» также подключим через резистор номиналом 10 кОм к питанию +5 В.

Схема подключения кнопки к Arduino по схеме с подтягивающим резистором

Напишем вот такой скетч для обработки нажатий на кнопку и загрузим в Arduino.

Встроенный светодиод на выводе «13» постоянно горит, пока не нажата кнопка. Т.е. на порте «2» Arduino всегда присутствует высокий логический уровень HIGH. Когда нажимаем кнопку, напряжение на «2» порте принимает состояние LOW, и светодиод гаснет.

5 Подключение кнопки по схеме со стягивающим резистором

Теперь соберём схему со стягивающим резистором. Один контакт кнопки соединим с питанием +5 В, второй – с цифровым выходом «2». Цифровой выход «2» подключим через резистор номиналом 10 кОм к земле. Скетч менять не будем.

Подключение кнопки к Arduino по схеме со стягивающим резистором

При включении схемы на цифровом порте «2» Arduino низкий уровень LOW, и светодиод не горит. При нажатии на кнопку на порт «2» поступает высокий уровень HIGH, и светодиод загорается.

Источник

Button

Pushbuttons or switches connect two points in a circuit when you press them. This example turns on the built-in LED on pin 13 when you press the button.

Hardware

Momentary button or Switch

10K ohm resistor

Circuit

Connect three wires to the board. The first two, red and black, connect to the two long vertical rows on the side of the breadboard to provide access to the 5 volt supply and ground. The third wire goes from digital pin 2 to one leg of the pushbutton. That same leg of the button connects through a pull-down resistor (here 10K ohm) to ground. The other leg of the button connects to the 5 volt supply.

When the pushbutton is open (unpressed) there is no connection between the two legs of the pushbutton, so the pin is connected to ground (through the pull-down resistor) and we read a LOW. When the button is closed (pressed), it makes a connection between its two legs, connecting the pin to 5 volts, so that we read a HIGH.

You can also wire this circuit the opposite way, with a pullup resistor keeping the input HIGH, and going LOW when the button is pressed. If so, the behavior of the sketch will be reversed, with the LED normally on and turning off when you press the button.

If you disconnect the digital I/O pin from everything, the LED may blink erratically. This is because the input is «floating» — that is, it will randomly return either HIGH or LOW. That’s why you need a pull-up or pull-down resistor in the circuit.

Schematic

See Also

BlinkWithoutDelay — Blink an LED without using the delay() function.

Debounce — Read a pushbutton, filtering noise.

DigitalInputPullup — Demonstrates the use of INPUT_PULLUP with pinMode().

StateChangeDetection — Count the number of button pushes.

toneKeyboard — A three-key musical keyboard using force sensors and a piezo speaker.

toneMelody — Play a melody with a Piezo speaker.

toneMultiple — Play tones on multiple speakers sequentially using the tone() command.

tonePitchFollower — Play a pitch on a piezo speaker depending on an analog input.

Источник

Adblock
detector