Распиновка дисплеев для планшетов

Распиновка дисплеев для планшетов

Почему из них? Потому-что имеются. Если есть способ «накидать проводов и всё будет ок», то буду рад узнать его. В крайнем случае, может быть, закажу контроллер под эту матрицу, хоть пока и не знаю где.

На крышке устройства, из которого был изъят данный орган, было написано «Full HD 1080», но чуйка подсказывает, что это не так, но да пофиг.

Azathtot,
та получится, правда хрень, но получится. и fpga не надо и avr. 3 ацп и всех дел. матрица 24 bit digital rgb, вопрос как винду уговорить на 800х480. контроллер-скалер под такое разрешение из доступных только rtd2660|2662 и опять переходник 50-60 пин скорее всего самодельный делать(слава богу хоть гамма не вытащена). проще уж serial over usb замутить. но опять же 800х480. а на винде даже 1024х600 дикое гуано.

кста строенные ad вроде до сих пор выпускает.

не соврал v29 еще можно, за одно и телевизор будет), правда hdmi никуда кроме компа, да еще походу и едид править.

Сообщение отредактировал luckylamer — 28.03.18, 18:11

KineVan,
вариант с ацп крайне не советую, там анальная разводка с аналоговыми и цифровыми полигонами, штук 5-10 вариантов уйдет пока что вразумительное получится.
вот такая беда если устраивает и переходник лепить будете, меряйте напряжения на разъеме матрицы на планше.

Сообщение отредактировал luckylamer — 28.03.18, 18:48

Источник

Подключение ЖК-панели от iPad к персональному компьютеру

Сломанный ноутбук или планшет бывает жалко выкидывать, тем более если у него сгорела материнка/видеокарта/процессор, а дисплей в полном порядке. В этом случае есть выход: можно подключить ЖКИ от мобильного устройства как второй/третий экран к персональному компьютеру. Лучше всего для этого подходит ЖК-дисплей от последних моделей iPad с размером 9,7″ и разрешением сторон 2048х1536. Студент Варшавского университета Анджей Суровец (Andrzej Surowiec) сумел подключить retina-дисплей от iPad к ПК через DisplayPort на максимальном разрешении.

Сломанный iPad с рабочим дисплеем можно купить за смешные деньги. Более того, можно напрямую заказать эту деталь из Китая, она обойдётся примерно в 55 долларов. Так что этот трюк даже экономически выгоден: вы не сможете купить дисплей для ПК с таким разрешением ещё дешевле.

Польский студент для своего концептуального проекта купил панель LP097QX1-SPA1 производства LG. Это не эксклюзивная деталь для Apple. Кроме планшетов iPad, она ставится и в некоторые другие планшеты китайского производства.

ЖК-панель оснащается интерфейсом eDisplayPort, который пришёл на смену LVDS, и суть этого хака заключается в том, чтобы подключить eDisplayPort к стандартному DisplayPort на видеокарте персонального компьютера.

Автор не смог найти в интернете доказательства, что eDisplayPort совместим с DisplayPort, поэтому решил проверить это самостоятельно, соединив провода из кабелей через самодельную интерфейсную плату.

Самый дешёвый переходник для ЖК-панели iPad — это Molex 502250-5191 стоимостью около 7 долларов. Затем провода с каждой стороны просто припаиваются к соответствующим контактам на самодельной плате. Схему можно взять на github.

Сама электроника ЖК-панели может запитываться непосредственно через интерфейсную плату, ей нужно всего 3,3 В на 500 мА. Но для подсветки экрана требуется какой-то внешний источник питания, потому что подсветка потребляет до 4,4 Вт. Покопавшись в схемах iPad 3, автор сумел найти информацию, что подсветка экрана состоит из 12 рядов белых светодиодов по 6 штук в каждом, и все вместе им требуется источник питания на 20 В. В экспериментальной модели автор не заморачивался с красивой схемой, а просто поставил по резистору 68R на каждый катод, так что каждый ряд светодиодов тянул по 17 мА. Напряжение 20 В можно получить из пятивольтного источника через повышающий конвертер TPS61175.

Как ни странно, вся эта конструкция заработала без глюков как обычный компьютерный дисплей.

Источник

Распиновка 40 pin, 30 pin

Для тех кто решил «припаять проводок» шлейфа матрицы или вообще разобраться в назначении сигналов.

У большинства ноутбуков мы видим распиновки 2-х видов: 30 pin CCFL, 40 pin LED

Разъём 40 pin с подсветкой LED

1 NC No Connection (Reserve)
2 AVDD PowerSupply,3.3V(typical)
3 AVDD PowerSupply,3.3V(typical)
4 DVDD DDC 3.3Vpower
5 NC No Connection (Reserve)
6 SCL DDCClock
7 SDA DDCData
8 Rin0- -LVDSdifferential data input(R0-R5,G0)
9 Rin0+ +LVDSdifferential data input(R0-R5,G0)
10 GND Ground
11 Rin1- -LVDSdifferential data input(G1-G5,B0-B1)
12 Rin1+ +LVDSdifferential data input(G1-G5,B0-B1)
13 GND Ground
14 Rin2- -LVDSdifferential data input(B2-B5,HS,VS,DE)
15 Rin2+ +LVDSdifferential data input(B2-B5,HS,VS,DE)
16 GND Ground
17 ClkIN- -LVDSdifferential clock input
18 ClkIN+ +LVDSdifferential clock input
19 GND Ground
20 NC No Connection (Reserve)
21 NC No Connection (Reserve)
22 GND Ground
23 NC No Connection (Reserve)
24 NC No Connection (Reserve)
25 GND Ground–Shield
26 NC No Connection (Reserve)
27 NC No Connection (Reserve)
28 GND Ground–Shield
29 NC No Connection (Reserve)
30 NC No Connection (Reserve)
31 VLED_GND LED Ground
32 VLED_GND LED Ground
33 VLED_GND LED Ground
34 NC No Connection (Reserve)
35 PWM System PWM Signal Input
36 LED_EN LED enable pin(+3V Input)
37 NC No Connection (Reserve)
38 VLED LED Power Supply 7V-20V
39 VLED LED Power Supply 7V-20V
40 VLED LED Power Supply 7V-20V
Номер Сигнал Описание
1 NC No Connection
2 VDD Power Supply +3.3V
3 VDD Power Supply +3.3V
4 VEDID EDID +3.3V Power
5 NC No Connect
6 CLKEDID EDID Clock Input
7 DATAEDID EDID Data Input
8 RxOIN0- -LVDS Differential Data INPUT(Odd R0-R5,G0)
9 RxOIN0+ +LVDS Differential Data INPUT(Odd R0-R5,G0)
10 VSS Ground
11 RxOIN1- -LVDS Differential Data INPUT(Odd G1-G5,B0-B1)
12 RxOIN1+ +LVDS Differential Data INPUT(Odd G1-G5,B0-B1)
13 VSS Ground
14 RxOIN2- -LVDS Differential Data INPUT(Odd B2-B5,HS,VS,DE)
15 RxOIN2+ +LVDS Differential Data INPUT(Odd B2-B5,HS,VS,DE)
16 VSS Ground
17 RxOCKIN- -LVDS Odd Differential Clock INPUT
18 RxOCKIN+ -LVDS Odd Differential Clock INPUT
19 VSS Ground
20 RxEIN0- -LVDS Differential Data INPUT(Even R0-R5,G0)
21 RxEIN0- +LVDS Differential Data INPUT(Even R0-R5,G0)
22 VSS Ground
23 RxEIN1- -LVDS Differential Data INPUT(Even G1-G5,B0-B1)
24 RxEIN1+ +LVDS Differential Data INPUT(Even G1-G5,B0-B1)
25 VSS Ground
26 RxEIN2- -LVDS Differential Data INPUT(Even B2-B5,HS,VS,DE)
27 RxEIN2+ +LVDS Differential Data INPUT(Even B2-B5,HS,VS,DE)
28 VSS Ground
29 RxECKIN- -LVDS Even Differential Clock INPUT
30 RxECKIN+ +LVDS Even Differential Clock INPUT
31 VLED_GND LED Ground
32 VLED_GND LED Ground
33 VLED_GND LED Ground
34 NC No Connection
35 S_PWMIN System PWM signal Input
36 LED_EN LED Enable Pin(+3V Input)
37 NC No Connection
38 VLED LED Power Supply 7V-21V
39 VLED LED Power Supply 7V-21V
40 VLED LED Power Supply 7V-21V

Как в нашем сервисном центре проводится бесплатная диагностика можно узнать здесь.

Разъём 30 pin подсветка CCFL ламповая

1 VSS Power Ground
2 VDD + 3.3V Power Supply
3 VDD + 3.3V Power Supply
4 VEDID + 3.3V EDID Power
5 AGING Aging Mode Power Supply
6 CLKEDID EDID Clock Input
7 DATAEDID EDID Data Input
8 RXIN0N -LVDS Differential Data Input
9 RXIN0P +LVDS Differential Data Input
10 VSS Power Ground
11 RXIN1N -LVDS Differential Data Input
12 RXIN1P +LVDS Differential Data Input
13 VSS Power Ground
14 RXIN2N -LVDS Differential Data Input
15 RXIN2P +LVDS Differential Data Input
16 VSS Power Ground
17 CK1INN -LVDS Differential Clock Input
18 CK1INP +LVDS Differential Clock Input
19 VSS Power Ground
20 X —
21 X —
22 VSS Power Ground
23 X —
24 X —
25 VSS Power Ground
26 X —
27 X —
28 VSS Power Ground
29 X —
30 X —

2-ой вариант
1 VSS Ground
2 VDD POWER SUPPLY +3.3V
3 VDD POWER SUPPLY +3.3V
4 VEEDID DDC 3.3V Power
5 NC No Connection
6 CLKEDID DDC Clock
7 DATAEDID DDC data
8 O_RxIN0- LVDS(Odd R0-R5,G0)
9 O_RxIN0+ LVDS(Odd R0-R5,G0)
10 GND Ground
11 O_RxIN1- LVDS(Odd G1-G5,B0-B1)
12 O_RxIN1+ LVDS(Odd G1-G5,B0-B1)
13 GND Ground
14 O_RxIN2- LVDS(Odd B2-B5,Sync,DE)
15 O_RxIN2+ LVDS(Odd B2-B5,Sync,DE)
16 GND Ground
17 O_RxCLK- LVDS(Odd Clock)
18 O_RxCLK+ LVDS(Odd Clock)
19 GND Ground
20 E_RxIN0- LVDS(Even R0-R5,G0
21 E_RxIN0+ LVDS(Even R0-R5,G0)
22 GND Ground
23 E_RxIN1- LVDS(Even G1-G5,B0-B1)
24 E_RxIN1+ LVDS(Even G1-G5,B0-B1)
25 GND Ground
26 E_RxIN2- LVDS(Even B2-B5,Sync,DE)
27 E_RxIN2+ LVDS(Even B2-B5,Sync,DE)
28 GND Ground
29 E_RxCLK- LVDS(Even Clock)
30 E_RxCLK+ LVDS(Even Clock)

Источник

Подключение матрицы от ноутбука к планшету. Подключение матриц различных диагоналей к материнской плате ноутбука

На просторах интернета очень много описаний того, как подключить универсальный скалер к матрице, но подробной схемы полного подключения не нашлось. А если и есть, то найти её очень сложно. Всё приходится составлять из 2-3 статей. Решено сделать полное описание, основываясь на собственном подключении.

В закромах чулана завалялось 2 монитора, 17″ и 19″. Один показывал только синим, второй — только зелёным. Матрицы обе живые, как раз для экспериментов со скалером.

Первый образец: Samsung 940n,

с матрицей — HSD190MEN3

Второй образец: Proview ma782Kc,

с матрицей — PV170LCM

Закупленный универсальный скалер: модель — LA. MV29.P.

Схема, по которой подключаем данное произведение китайских инженеров:

Блок питания монитора — инвертор монитора — скалер — матрица — кнопки — колонки.

Кроме самого скалера ничего не покупалось: ни шлейфов, ни кнопок, ни инверторов.

Подключение блока питания и инвертора монитора к скалеру.

Тут всё настолько просто, что даже стало как-то грустно ((

Достаточно подключить: питание к скалеру, управление инвертором и яркостью накала ламп.

Нам потребуется 4 контакта: плюс, минус, контакт включения инвертора (ламп подсветки) и управление яростью ламп. На самом блоке питания это контакты:

BLON — всё, что написано ON, — это и есть включение инвертора.
BRI — управление яркостью, очень часто обозначается как DIM .
+14V — понятно, что + питания, но не забываем, что у нас скалер на 12 — необходимо понизить, об этом далее.
GDN — минус (земля).

Куда всё это припаивать на скалере?

Контакты скалера и соответствие сигналов.

Находим сам разъём инвертора.

И согласно маркировке подключаем.

Незабываем, что питания в 14 вольт много для скалера, рекомендую поставить стабилизатор напряжения на 12 вольт (например, L МС 7812 ) в разрез питания (можно любой другой на 12 вольт, соответственно с его схемой подключения). В моём случае схема подключения стабилизатора такая:

Подключение IR приёмника к скалеру.

У меня ИК приёмник шёл отдельно.

Подключаем его к скалеру следующим образом:

После подключения можно проверить работу нашего скалера и включение инвертора, (появляется подсветка). Если всё отлично работает, приступаем к подключению матрицы.

Подключение матрицы к скалеру.

На самом деле, мне повезло, и у меня подключение обеих матриц было идентично. Пришлось только разобрать шлейф монитора 17″ и просто переставить контакты местами. Входы в матрицу тоже идентичны, в итоге я одним шлейфом проверил сразу 2 матрицы разных мониторов.

Разъём и обозначения на матрице.

Видно 10 каналов, питание 5 вольт и промежутки между каналами — это масса.

Трындец, вот тут я встал в ступор. Ни одной маркировки на данный разъём.

Хорошо, что есть добрые люди, которые выложили другую версию скалера с точно такой же распиновкой.

На шлейфе от матрицы до родного скалера всё перепутано. Надо исправить)

RXE3 + LVDS EVEN 3 + Signal

Частое обозначение Моя матрица Универсальный Скалер
LCD-VDD питания для панели VDD + 5V VLCD
LCD-VDD питания для панели VDD + 5V VLCD
LCD-VDD питания для панели VDD + 5V VLCD
GND Земля GND GND
GND Земля GND GND
GND Земля GND GND
RXO0- LVDS ODD 0 — Signal RA_NO BTXO-
RXO0 + LVDS ODD 0 + Signal RA_PO BTXO +
RXO1- LVDS ODD 1 — Signal RB_NO BTX1-
RXO1 + LVDS ODD 1 + Signal RB_PO BTX1 +
RXO2- LVDS ODD 2 — Signal RC_NO BTX2-
RXO2 + LVDS ODD 2 + Signal RC_PO BTX2-
GND Земля GND GND
GND Земля GND GND
RXOC- LVDS ODD Clock — Signal RCLK_NO BTXC-
RXOC + LVDS ODD Clock + Signal RCLK_PO BTXC +
RXO3- LVDS ODD 3 — Signal RD_NO BTX3-
RXO3 + LVDS ODD 3 + Signal RD_PO BTX3 +
RXE0- LVDS EVEN 0 — Signal RA_NE ATXO-
RXE0 + LVDS EVEN 0 + Signal RA_PE ATXO +
RXE1- LVDS EVEN 1 — Signal RB_NE ATX1-
RXE1 + LVDS EVEN 1 + Signal RB_PE ATX1 +
RXE2- LVDS EVEN 2 — Signal RC_NE ATX2-
RXE2 + LVDS EVEN 2 + Signal RC_PE ATX2 +
GND Земля GND GND
GND Земля GND GND
RXEC- LVDS EVEN Clock — Signal RCLK_NE ATXC-
RXEC + LVDS EVEN Clock + Signal RCLK_PE ATXC +
RXE3- LVDS EVEN 3 — Signal RD_NE ATX3-
RD_PE ATX3 +

Вот так получилось у меня.

Вариант для проверки.

На матрице два левых питание +5 их вставляем первыми, затем один красный их середины, это общий. Если перевернуть матрицу, то видно что они уходят на массу.

Для контроля я подключил только общий и питания, включил скалер. Сразу стало понятно, что матрица работает, она сразу стала чёрной . Без питания, когда работают только лампы, она более светлая.

Подключение кнопок управления и колонок к скалеру.

Кнопки к скалеру можно подключить двумя способами. Разъём Key port.

Первый вариант: двумя проводами GND и K0 , в данном случае каждая кнопка подключена через своё сопротивление.

k0 Вкл/Выкл
k1 — R1 680 Звук +
k2 — R2 1.5k Звук —
k3 — R3 2.7k Вход
k4 — R4 4.7k Меню
k5 — R5 8.2k Канал +
k6 — R6 15k Канал —
k7 — R7 38k Резерв

Второй вариант: каждая кнопка имеет свой контакт на скалере, и через кнопку уходит на ноль (GND).

k0 Вкл/Выкл
k1 Звук +
k2 Звук —
k3 Вход
k4 Меню
k5 Канал +
k6 Канал —
k7 Резерв

Есть возможность подключить 2 светодиода. Один красный — режим ожидания, второй зелёный — включение. Подключить их можно к выводам GRN и RED соответсвенно.

Надеюсь, после данной статьи, ответ на вопрос, как подключить универсальный скалер к матрице, найден)

Доброго времени суток! Сегодня я вам расскажу как при помощи одной посылочки из Китая и хлама который валяется у вас дома сделать телевизор , ну или по крайней мере монитор . Дело в том, что у многих, наверное, валяются еще древние ноутбуки, какие-то испорченные мониторы, нерабочие планшеты и все это можно пустить в ход. Ну да отдельно матрицу подключить нельзя, но с помощью нехитрого устройства, а именно универсального скалера , можно подключить любую матрицу к HDMI , VGA или даже сделать телевизор.

И так, что мы имеем.

Я заказал себе довольно такой продвинутый скалер.

И попался под руку вот такой планшет, он еще живой хотя уже и битый сенсор, батарея не так хорошо держит, весь поцарапанный, но матрицу из него можно позаимствовать.

Разбираем планшет, чтоб получить доступ к матрице.

Отключаем все шлейфы и отбрасываем в сторону все, кроме матрицы.

Матрицы имеют довольно стандартное подключение , в них интерфейс LVDS и стандартизированный ряд разъёмов . Какой разъем у вашей матрицы можете посмотреть по внешнему виду либо же по даташиту . На каждый тип матрицы существует отдельный шлейф. Например у меня есть несколько шлейфов.

1 — это более старый стандарт, там где матрицы еще были с ламповой подсветкой.

2 — более новый стандарт, там где LED-матрицы идут.

3 — эти разъёмы встречаются в 7 дюймовых планшетах и разных небольших.

С другой стороны разъёмы более-менее стандартизированы и подходят в практически любой универсальный скалер.

Таким скалером я еще ни разу не пользовался в этом гораздо больше функций по сравнению с теми, что я использовал, даже пульт в комплекте .

Прежде чем подключать матрицу необходимо правильно сконфигурировать плату (скалер), чтоб не испортить матрицу. Обязательно рекомендую сначала скачать даташит к матрице, чтоб вы знали, какое разрешение матрицы, какое питание логики и подсветки.

Первое с чего стоит начать, будем смотреть слева на право. На скелере есть ряд перемычек, левая верхняя конфигурирует напряжение логики , его необходимо выбрать исходя из вашей матрицы. Как правило, матрицы ноутбуков имеют питание 3.3 вольта, в обычных мониторах 5 вольт, но здесь еще есть перемычка на 12 вольт, честно говоря, я не знаю, где такое напряжение используется. Сразу меняем эту перемычку, чтобы не спалить нашу матрицу, в моем случае логика 3.3 вольта.

Дольше идет следующий набор перемычек, это выставляется разрешение экрана. Хочу заметить, что помимо разрешения экрана еще меняется битность. На обратной стороне скалера есть шпаргалка, в которой написано разрешение и битность. Битность бывает 6-bit и 8-bit, визуально разъёмы 6-ти и 8-ми битные различаются по количеству контактов. Информацию какой битности ваша матрица опять же читаем в даташите.

Прежде чем переходить к матрице необходимо изучить даташит, его очень легко найти по наклейке, которая находится сзади матрицы. В моем случае это «LP101WX1 ». В даташите на матрицу нас интересуют 3 или 4 пункта, в зависимости от того это LED-матрица или это матрица с лампой с холодным катодом. Прежде всего, определим какое разрешение матрицы, просто листаем даташит и ищем эту запись. Здесь у нас в таблице указан формат пикселей (Pixel Fotmat) то есть это 1280×800, соответственно перемычками на сайлере необходимо выбрать это разрешение. Ширина интерфейса соответствует количеству цветов, в данном случае это 6-bit или 262 144 цветов. Этих двух параметров нам достаточно чтоб выбрать правильный режим работы матрицы.

Но для того чтобы матрица выжила нам еще нужно выставить правильное напряжение , листаем дальше. И вот у нас сводная таблица электрических характеристик. Logic, то есть питание логики, напряжение питания логики (Power Supply Input Voltage) от 3,0 до 3,6 вольт, типичное 3,3 вольта, соответственно перемычку питания матрицы выставляем на 3.3 вольта.

И на всякий случай смотрим подсветку, этот пункт нужно смотреть только в том случает если матрица с LED подсветкой. Как написано на плате, плата питается от 12 вольт, а наша подсветка работает от 5 до 21 вольта, 12 как раз будет в самый раз. Я других матриц не встречал у которых напряжение питания 5 вольт, но предполагаю, что такое может быть, если будете использовать матрицу из какого ни будь маленького планшета. Поэтому вот этот параметр обязательно смотрите, иначе можете просто испортить подсветку матрицы. Если же питание будет отличное от 12 вольт, то напрямую подключать разъем питание подсветки нельзя, нужно будет обеспечить нужное напряжение питания.

И так, настраиваем скалер в соответствии с данными из даташита. Меня интересует разрешение 1280×800 и 6-bit, для этого ставлю перемычки F и G

Перемычки сконфигурировали, теперь давайте пройдемся по элементам на плате.

1 — первые два разъема это питание

2 — последовательный порт

3 — DC-DC преобразователь

4 — линейный стабилизатор

5 — разъемы (VGA, HDMI, RCA, звук и высокочастотное подключение антенны)

6 — управление подсветкой

7 — кнопки и всякое управление

8 — разъем LVDS, куда подключается матрица

11 — усилитель мощности

Подробнее о разъёмах

Разъем управления подсветкой.

Если у вас LED-матрица , то есть светодиодная, то заморачиваться не стоит, у вас прямо в матрице установлен контролер управления подсветкой и этот разъем входит прямо в шлейф. Т.е. Просто подключаете матрицу и больше не над чем заморачиваться не нужно.

Если же матрица древняя на CCFL-лампах , определить это можно по дополнительным проводам выходящим из матрицы.

В матрице могут быть установлены такие лампы и из нее выходят провода. В ноутбуках обычно выходит 1 провод, в матрице монитора 2 или 4. Для того чтобы подключить такую матрицу можно использовать универсальный инвертор для подсветки . Он бывает на 1, 2 и 4 выхода, т.е. каждый выход это подключение одной лампы. Инвертор нужно подбирать по количеству ламп в вашей матрице, то есть нельзя подключить в инвертор с 4-мя выходами только 2 лампы, так как инвертер уйдет в защиту, потому что все выходы должны быть равномерно нагружены. Поэтому если матрица на 2 лампы, покупаем инвертор на 2 выхода, если на 1 лампу, покупаем на 1 выход. Разъемы унифицированы поэтому подходят сразу 1 в 1, просто вот так втыкаются и все.

Приступим к подключению

Для этого нам нужен шлейф, он легко втыкается, перемычки на плате уже сконфигурированы. LVDS выравниваем по первой ножке , на шлейфе это маркировка в виде пятна краски, а на плате треугольник — это первая ножка.

На всякий случай проверяем, подходит ли подсветка. Красный — плюс, черный — минус и единственный провод это включение подсветки. Переворачиваем плату на обратную сторону и сравниваем надписи возле контактов с проводами, если все сходится подключаем.

Еще нам нужно какое ни будь управление. Кстати подробнее об управлении, колодка, куда я подключил ИК-приемник это управление. Сюда идут кнопки, они все подписаны, кнопки можно приобрести отдельно или подключить свои.

В принципе это все, все что нужно подключили.

Переворачиваем матрицу и подключаем питание. Если вы собираетесь подключаться к компьютеру, то можно взять питание с БП компьютера. Включаем.

Теперь необходимо разобраться с пультом, чтоб найти меню и поменять язык. Думаю этот процесс описывать не стоит, так как у вашего скалера все может быть по другому. К сожалению, у себя я нашел только английский, но не беда, буду пользоваться ним. И на этой же вкладке настроек я нашел размер меню и увеличил его, чтоб все было лучше видно.

Ну что, попробуем подключить камеру через HDMI. В общем подключив камеру получилось, что полутона цветов отображались неправильно.

Я сначала подумал что сгорел буфер опорных напряжений в матрице, но подключив матрицу к планшету понял, что с матрицей все в порядке, она не сгорела. Покопавшись на просторах интернета, нашел сервисное меню. Оказывается нужно в сервисном меню изменить способ работы скалера с матрицей. Для этого заходим в меню и набираем код 8896, и нам открывается сервисное меню. В меню находим системные настройки (System setting) -> Настройки панели (Panel setting) -> и просто изменяем цветовую схему (Color set). Перебирая все варианты находим самый оптимальный, для меня это был 3. В других моделях скалеров может быть другой код доступа в сервисное меню и немного другой путь к настройкам цветовой схемы.

Сегодня мы проведем не большой эксперимент, в котором узнаем, может ли материнская плата ноутбука выводить изображение на матрице различных диагоналей.

В эксперименте будет участвовать платы Вестрон JE70-DN.

Родной матрицей для данной платы является матрица диагональю 17,3 дюйма модель N17306-L02 Rev.C3.
Данный ноутбук у нас после удара и после ремонта материнской платы.
После вывода изображения на матрицу выяснилось, что она имеет цветовые искажения.
То есть если вывести белый фон, то цвет отображается с зеленовато-голубоватым оттенком.
Чтобы понять, в чем проблема, толи проблема в самом графическом чипе в самом шлейфе или матрице, самое простое, что можно сделать, это подключить другую матрицу.
Матрицы такой диагонали под рукой не оказалось, поэтому мы будем подключать стандартную матрицу диагональю 15,6 дюймов.
Я уже пробовал проводить данную операцию и изображение у нас появилось.
Как выяснилось виновник у нас сама матрица и дело в том, что на ней не работает часть красных пикселей.
Если мы выводим белый фон на матрицу у нас поочередно идут полосы зелено красных пикселей.
Часть красных пикселей работает, часть не работает.
Поэтому белый фон выходит с зеленовато голубоватым оттенком, это связанно с самим механическим воздействием на матрицу, и с этим уже не чего не сделать.
Подключаем матрицу к ноутбуку и видим, что надпись белого цвета выдает зеленоватый оттенок.
Это была матрица 17,3 дюйма.

Теперь подключим тестовую матрицу она у нас с дефектами, но изображение она выводит.
Это модель B156XW02V6.
Как видим, здесь белый цвет искажается, без каких либо цветовых искажений.

Теперь подключаем матрицу диагональю 10,1 дюйм, из нетбука.
Посмотрим, заработает ли она на данной платформе.
Она тоже битая, но изображение она выводит.
Как видим, даже такая маленькая диагональ у нас без проблем работает.
Белый цвет, как и в предыдущей матрице без искажений.


Видео смотрите ниже:

Ноутбуки ломаются и морально устаревают, но некоторые компоненты в них остаются рабочими и ещё могут служить. Если экран ноутбука исправен, его можно достать из корпуса и превратить в монитор. Как это сделать?

Отключите ноутбук от блока питания и достаньте аккумулятор (если он внешний, а не установлен внутри корпуса).

Разберите корпус. Вскрытие разных моделей ноутбуков осуществляется по-разному, но в целом в этом нет ничего сложного: требуется открутить все болты (в том числе скрытые, например, за DVВ-приводом) и осторожно раскрыть крышку. Затем демонтируйте элементы, которые мешают достать панель, и открутите её крепления. Ни в коем случае не прикасайтесь к платам, микросхемам и проводам. Статическое электричество может вывести из строя компоненты, которые ещё работают и могут пригодиться.

Подключите матрицу к универсальному LDC-контроллеру — например, LA.MV29.P или его аналогу. Его можно купить в интернет-магазинах (на AliExpress , Banggood и пр.)

Этот контроллер питается от 12-вольтного адаптера и поддерживает почти все модели LCD-матриц. Изображение на контроллер можно подавать с компьютера, ноутбука или планшета через порт HDMI, VGA или AV, поддерживаемое разрешение — до 1920×1200 пикселей. Кроме того, эта плата может служить в качестве ТВ-тюнера и выводить на экран телеканалы. В комплектацию входит пульт дистанционного управления и инфракрасный датчик.

Перед оформлением заказа стоит сообщить продавцу модель вашей матрицы, чтобы оно подобрал контроллер, который гарантированно вам подойдёт. Важный момент: вы должны узнать, с каким напряжением работает матрица, это потребуется для правильной распиновки шлейфа. Посмотрите модель на задней части матрицы, зайдите на сайт datasheet4u , найдите эту модель и посмотрите её характеристики. Переставьте перемычку на универсальном контроллере в соответствующее положение: 3,3, 5 или 12 вольт. Будьте предельно внимательны: если поставите более высокое напряжение, чем требуется, контроллер матрицы может сгореть.

Контроллер потребуется прошить. Для этого скопируйте файл lamv29.bin из этого архива в корень флешки, вставьте её в USB-порт включенного контроллера, подождите минуту, отключите питание, отсоедините флешку, снова включите контроллер и проверьте, правильно ли работает ли матрица. В меню можно поменять язык с китайского на русский.

Для настройки автоматического включения матрицы при подаче питания зайдите в настройки и введите на пульте 1147. Откроется сервисное меню. Перейдите в подпункт Advanced Setting и переведите опцию AC on Mode в режим On.

Контроллер можно спрятать в какой-нибудь корпус или просто приклеить его на заднюю часть матрицы. В качестве корпуса для матрицы можно использовать корпус ноутбука или монитора. Конечно, можно оставить так, как есть, хотя такая конструкция будет выглядеть не очень эстетично. Если вы используете матрицу без корпуса, её можно установить в держатель для планшета с возможностью настройки угла наклона.

Получилось так, что появилась у меня матрица от ноутбука Acer Aspire 5520g. Вот и появилась идея использовать ее в качестве небольшого монитора. Начал я эту тему активно изучать и вот что оказалось. Все матрицы, будь то от ноутбука, либо монитора или телевизора работают через универсальную шину LVDS. Далее я обнаружил в продаже так называемые универсальные контроллеры LVDS, как их еще называют — универсальные скалеры.

Их довольно много разных, собраны на разных чипах. Сейчас я постараюсь немного об этом рассказать. Как правило, основное отличие их друг от друга это разное количество интерфейсов ввода. На самых простых моделях есть только VGA разъем, на более продвинутых есть помимо VGA еще DVI, HDMI и даже RCA(тюльпаны). Так что в зависимости от того где и как планируете применять матрицу выбираете и скалер с нужными видео входами. Есть еще одно отличие — существуют скалеры которые прошиваются под определенную матрицу (под ее разрешение), а есть такие где с помощью перемычек можно выставить нужное разрешение и, при необходимости поменять его. Для себя я взял именно вариант с перемычками, так как для прошивки нужен еще и дополнительно программатор. Чтобы подключить матрицу нам нужно знать: ее рабочее напряжение, разрешение. Для этого смотрим маркировку и ищем ее даташит. В моем случае это была матрица диагональю 15,4″ с маркировкой n154i2-l02.

Эта матрица работает от напряжения 3.3В имеет разрешение 1280*800. Это все характеристики что нам нужны. Вернемся теперь к скалеру. У него видим: разъем VGA, разъем для подключения питания, разъем для подключения инвертора подсветки (о нем чуть ниже), и разъем для подключения клавиатуры (здесь все просто, все обозначено на плате), гребенка с перемычками для выбора нужного разрешения, ну и сам разъем LVDS. На обратной стороне платы находится таблица с комбинацией джамперов под нужное разрешение. Находим наше разрешение и устанавливаем джамперы. Еще на плате есть джампер который отвечает за переключения напряжение питание матрицы. Переключаем его в положение 3.3В. Теперь нужно соединить плату и матрицу. Я решил не заморачиваться поиском готовых кабелей. Вместе с матрицей мне также достался и шлейф. Разъем который шел к материнской плате я отрезал, ну а разъем идущий к матрице оставил. На плате матрицы производитель промаркировал все выводы которые нам нужны поэтому соединять все довольно-таки просто.




Сразу следует оговориться и сказать еще пару слов о LVDS. Плата позволяет работать в 2 канальном режиме. Каждый канал подключается с помощью 8-ми проводов(8 битный режим). Если мы еще раз посмотрим на таблицу с обратной стороны платы то увидим: 1280*800-6-1. Это значит что матрица работает через шину 6 бит (используется 6, а не 8 проводов) и в одноканальном режиме. Теперь смотрим на обозначения на плате матрицы. Там есть такие выводы как RX0- RX0+, RX1- RX1+, RX2- RX2+, CK- CK+. Эти выводы нужно подключить соответственно выводам на плате — BTX0- BTX0+, BTX1- BTX1+, BTX2- BTX2+, BTXC- BTXC+. Надеюсь логика подключения понятна. Далее подключаем питание — на матрице это: VCC(+) — 2,3,4 GND(-) — 1,7,10,13,16,19. На плате это VLCD(+) и GND(-). После подключения если подать питания можно заметить как матрица на несколько секунд темнеет и опять светлеет (контроллер при отсутствии входного видеосигнала переводит ее в ждущий режим). Но у меня этого не произошло. Дело оказалось в том что на плате нет элементов для формирования напряжения 3.3В. По задумке производителя должны быть установлены 2 диода с суммарным напряжением падения 1,7В. Эти диоды просто отсутствуют на плате, поэтому пришлось допаять линейный стабилизатор типа SC1117 на 3.3В и кинуть от него перемычку.

После такой доработки я подал сигнал на VGA разъем и на экране начало просвечивается изображение (без штатной подсветки его видно только если хорошо освещать матрицу). Теперь оставалось решить вопрос с инвертором. На плате есть разъем для подключения инвертора, там есть такие выводы: +12В, +5В, ON (включение инвертора), ADJ (управление яркостью с помощью ШИМ), GND. Подключил свой инвертор и.. ничего не произошло. В ходе экспериментов выяснилось следующее: инвертор работает с сигналами управления амплитудой 12В, плата выдает 5В, и плюс ко всему плата не выдает сигнал управления яркостью ADJ. Если первую проблему удалось установкой твердотельного реле, то вторую проблему так и не удалось победить. То ли мне немного бракованный скалер попался.


Пока просто соединил выводы ON и ADJ в один. Работает, но с максимальной яркостью подсветки. Ну и пару слов про клавиатуру. 10 пиновый разъем под клавиатуру имеет обозначение.(POWER-кнопка вкл/выкл, GLED — зеленый светодиод, RLED — красный светодиод, GND — масса, RIGHT — кнопка вправо, LEFT — кнопка влево, AUTO — кнопка авто настройки, MENU — кнопка входа в меню, UP — кнопка вверх, DOWN — кнопка вниз). Все как на обычном мониторе. Меню к сожалению на китайском.

Ксатати можно обойтись и без клавиатуры. У себя в итоге я так и сделал. Дело в том что скалер автоматически включается при появлении сигнала и переходит в ждущий режим при его отсутствии (как и обычный монитор). Поэтому ставить ее или нет — лично ваше дело. Конструктивно плату скалера я закрепил в корпусе подходящих размеров, который в свою очередь закреплен на задней стенке крышки ноутбука.








Для прокладки шлейфов в крышке и корпусе было сделано продольное отверстие. На этом у меня все. Надеюсь мой опыт кому-нибудь пригодится. Ну и фото получившегося монитора.

Источник

Adblock
detector