Пробный скетч для ардуино

RoboCraft

У нас уже была серия статей про программирование Arduino/Freeduino/CraftDuino. Там мы рассмотрели структуру программы, константы и специфичные для Arduino функции, которые собственно и составляют язык Wiring.

Теперь же настала пора практических занятий 🙂

Пожалуй, всё же стоит обозначить элементы управления Arduino IDE

Итак, слева направо:

компиляция (оригинальное название — проверка) кода
— стоп (остановка монитора COM-порта)
— новый скетч
— открыть скетч
— сохранить скетч
загрузить скетч в микроконтроллер Arduino/Freeduino
монитор последовательного (COM) порта

Самые важные для нас – первая и две последние кнопки 🙂

Т.о. цикл разработки скетча для Arduino можно представить так:

Написание кода – компиляция – загрузка в МК.

Кажется — всё просто 🙂
Попробуем снова загрузить Blink 🙂
Открываем тестовый скетч из Examples — Digital — Blink
и нажмём кнопку компиляции

Компиляция прошла без ошибок о чём нам и сообщают – «Done compiling» 🙂

Остаётся подключить нашу ардуину к питанию и COM-порту и нажать кнопку выгрузки скетча на МК.
Во время выгрузки будут мигать светодиоды Rx и Тx – сигнализирующие приём и передачу сообщений через последовательный интерфейс ардуины 🙂
Если выгрузка прошла успешно – мы получим сообщение: «Done uploading.»

Т.к. джампер на плате установлен в Autoreset enable плата сама перезагрузится, произойдёт заливка скетча, снова перезагрузка и через 10 секунд ардуина начнёт весело мигать светодиодом 🙂

Впрочем, светодиод даже не обязательно вставлять в разъём – на плате уже есть сигнальный светодиод, подключённый к 13-му цифровому порту ардуины через ограничительный резистор.

Используя провода, изготовленные из витой пары,

схему можно перенести на макетную плату.

А если всё делать по-честному и подключать светодиод через ограничительный резистор, то получится такая простейшая схема:

,которая на макетной плате будет выглядеть так:

Теперь немножко переделаем скетч Blink т.о., чтобы плата сообщала нам через COM-порт когда светодиод горит, а когда нет.
Для этого нужно добавить всего три строчки кода:

Компилируем и загружаем скетч в МК.

Светодиод мигает, а сообщения от платы мы можем увидеть через монитор последовательного порта.

Ура! Работает 🙂
Сообщения из последовательного порта можно смотреть любой терминальной программой, например tutty:

выбираем наш COM-порт и любуемся:

Но что это – при любой новой попытке просмотреть сообщения COM-порта наша плата перезагружается!
Всё дело в джампере Autoreset enable, который так удобен при загрузке новых скетчей 🙂
Если джампер снять, то теперь каждое новое подключение к последовательному порту не будет вызывать перезагрузку ардуины, но новые скетчи придётся загружать после ручного нажатия на кнопку Reset, расположенную на плате.

Источник

Arduino.ru

Скетч для проверки работоспособности портов и EEPROM

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

Написал универсальный скетч для проверки работоспособности портов и EEPROM памяти. Ищутся добровольцы для проверки в железе и доработки тестовой программы. Мой код проверен на ATmega128A, ATmega8A при этом никаких правок в коде делать не нужно. Количество цифровых и аналоговых выводов определяется автоматически.

Что еще нужно сделать:

1. Проверка аппаратных прерываний, таймеров, прерываний по переполнению таймера.

2. Прошивка на асме для проверки RAM, Stack Pointer Register, Status Register, регистров R0-R25, X,Y,Z

Что уже было сделано: Мой код при запуске ничего не делает, он ждет команду по UART. В терминал нужно отправить одну английскую букву для запуска нужного теста. Когда какой то тест был запушен, ч тобы его прервать нажмите кнопку ресет. Список комманд :

v — Выводит версию программы и краткое описание доступных тестов.

a — АЦП тест . Выводит значения всех аналоговых входов. Для этого вы подключаете переменный резистор поочередно к каждому аналоговому входу и смотрите как меняются значения.
i — Inputs test . В этом тесте включена подтяжка всех входов (INPUT_PULLUP). Тест в ыводит значения всех входов с низким уровнем на них. Вы берете провод подключенный на землю и через резистор 1КОм по очереди качаетесь каждого входа, в терминале должна появиться только одна надпись LOW с номером вывода. Этот тест позволяет найти замкнутые между собой пины или дорожки с обрывом (а также выводы со сгоревшими внутренними PULLUP резисторами )
o — Outputs test . Устанавливает все порты как выход с 1 на них. Вы берете тестер или светодиод с резистором и проверяете наличие высокого уровня на каждом выходе.
b — Blink . Тест наплатного светодиода.
0 — ZEROFILL встроенного EEPROM (тоесть заполнение нулями 0x00 во все ячейки ). Тест закончится, когда будет выведено «Done» в консоль. После этого запустите комманду » e » для вывода содержимого EEPROM в консоль и проверьте нет ли бытых ячеек
1 — 0xFF заполнение встроенного EEPROM. Тест закончится, когда будет выведено «Done» в консоль. После этого запустите комманду » e » для вывода содержимого EEPROM в консоль и проверьте нет ли бытых ячеек
p — Тест ШИМ на наплатном светодиод е . Тест надо полностью переписать, текущая реализация мне не нравится.

e — Выводит все содержимое EEPROM в терминал.

Цифровые порты 0 и 1 не тестируются. Этот тест предполагает, что выводы 0 ( RX ) и передачи данных 1 ( TX ) данных в порядке , раз у вас получилось загрузить скетч .

Код состоит из двух файлов. Последняя версия всегда доступна по ссылке

Источник

This example shows the simplest thing you can do with an Arduino to see physical output: it blinks the on-board LED.

Hardware Required

220 ohm resistor

Circuit

This example uses the built-in LED that most Arduino boards have. This LED is connected to a digital pin and its number may vary from board type to board type. To make your life easier, we have a constant that is specified in every board descriptor file. This constant is LED_BUILTIN and allows you to control the built-in LED easily. Here is the correspondence between the constant and the digital pin.

D13 — Intel Edison

D13 — Intel Galileo Gen2

D13 — Leonardo and Micro

D13 — LilyPad USB

If you want to lit an external LED with this sketch, you need to build this circuit, where you connect one end of the resistor to the digital pin correspondent to the LED_BUILTIN constant. Connect the long leg of the LED (the positive leg, called the anode) to the other end of the resistor. Connect the short leg of the LED (the negative leg, called the cathode) to the GND. In the diagram below we show an UNO board that has D13 as the LED_BUILTIN value.

The value of the resistor in series with the LED may be of a different value than 220 ohm; the LED will lit up also with values up to 1K ohm.

Schematic

After you build the circuit plug your Arduino board into your computer, start the Arduino Software (IDE) and enter the code below. You may also load it from the menu File/Examples/01.Basics/Blink . The first thing you do is to initialize LED_BUILTIN pin as an output pin with the line

In the main loop, you turn the LED on with the line:

This supplies 5 volts to the LED anode. That creates a voltage difference across the pins of the LED, and lights it up. Then you turn it off with the line:

That takes the LED_BUILTIN pin back to 0 volts, and turns the LED off. In between the on and the off, you want enough time for a person to see the change, so the delay() commands tell the board to do nothing for 1000 milliseconds, or one second. When you use the delay() command, nothing else happens for that amount of time. Once you’ve understood the basic examples, check out the BlinkWithoutDelay example to learn how to create a delay while doing other things.

Once you’ve understood this example, check out the DigitalReadSerial example to learn how read a switch connected to the board.

See Also

AnalogReadSerial — Read a potentiometer, print its state out to the Arduino Serial Monitor.

BareMinimum — The bare minimum of code needed to start an Arduino sketch.

DigitalReadSerial — Read a switch, print the state out to the Arduino Serial Monitor.

Fade — Demonstrates the use of analog output to fade an LED.

ReadAnalogVoltage — Reads an analog input and prints the voltage to the serial monitor.

Источник

Модульные тесты для проектов Ардуино

«Серьезные» разработчики встраиваемых систем (читай: стмщики) время от времени любят шпынять голозадых «ардуинщиков», у которых среда разработки, помимо всего прочего, не поддерживает даже аппаратные отладчики с точками останова и просмотром значений переменных под курсором мышки или в специальной табличке в реальном времени. Что ж, обвинение вполне справедливо, окошко Монитора последовательного порта (Serial Monitor) плюс Serial.println — не самый лучший инструмент отладки. Однако грамотный ардуинщик сможет с легкостью парировать атаку и поставить зарвавшегося стмщика на место в том случае, если он (ардуинщик) использует модульные тесты.

Итак, модульные тесты (unit tests, юнит-тесты) облегчают жизнь при поиске проблемных мест приложения, предотвращают повторение уже найденных проблем (регрессий), дают измеримую уверенность в надежности написанного кода. Это тем более важно при разработке встраиваемых приложений и всевозможных мобильных роботов, для которых процесс отладки, отлова и воспроизведения (особенно, воспроизведения) ошибок особенно затруднителен по сравнению с классическими настольными, серверными или мобильными приложениями.

Однако переход к использованию автоматических тестов в проекте требует специальной внутренней дисциплины, особого подхода к написанию кода и организации рабочего пространства проекта.

При подготовке к внедрению в проект модульных тестов следует иметь ввиду:

  • Тесты требуют дополнительного времени для написания кода (на самом деле, нет: время, потраченное на автоматические тесты, вполне сравнимо со временем, потраченным на ручную отладку того же участка, а на долгой дистанции оно еще многократно окупится), при этом код теста может превышать по размеру код тестируемого участка.
  • В покрытом тестами проекте может быть сложно проводить глобальную реорганизацию кода (рефакторинг) — особенно актуально на начальном этапе разработки, когда кодовая база и внутренний API еще не достаточно устаканились (с другой стороны, рефактор проекта, не покрытого тестами, повлечет все те же регрессии, просто вы про них не узнаете)
  • Нужно писать модули приложения так, чтобы их можно было запускать как в рамках приложения, так и внутри отдельных тестов
  • Необходимо проработать структуру и связи внутри проекта так, чтобы в нем нашлось место коду основного приложения, исполняемой прошивке основного приложения, коду тестов, исполняемой прошивке («запускальщик»/ланчер) для запуска тестов.

Я более не буду распространяться про философию модульного тестирования, а просто покажу, как технически внедрить простые модульные тесты в ваш проект на Ардуино.

  • Несколько стратегий организации рабочего пространства проекта с модульными тестами с учетом особенностей платформы Ардуино.
  • Вариант «все в одном» (и код и тесты в одном файле скетча),
  • вынесение тестов в отдельный модуль в каталоге скетча,
  • вынесение тестов в отдельный проект.
  • Запуск тестов на устройстве,
  • запуск этих же тестов на настольном компьютере без загрузки на устройство, заглушки для API Ардуино

Выбор библиотеки для модульного тестирования

Нам нужен фреймворк модульного тестирования:

  • Для Си/С++
  • Должен работать на устройствах семейства Ардуино
  • Должен работать на настольных системах
  • Люблю легковесные библиотеки (моё персональное предпочтение)

Для программирования Ардуино используется язык С++ вперемешку с Си, поэтому, теоретически, пойдет любой фреймворк модульного тестирования для С++, но мы хотим запускать тесты и на настольном компьютере и на устройстве. Дело в том, что для Ардуино реализованы кое-какие вызовы стандартной библиотеки libc, но далеко не все, поэтому не каждый фреймворк, работающий с libc, скомпилируется для Ардуино. Верно и в обратную сторону: если фреймворк сделан специально для Ардуино, то он может не заработать на настольной системе с libc.

Я просмотрел несколько фреймворков и остановился на 2х:

  • ArduinoUnit: https://github.com/mmurdoch/arduinounit. В общем, он удовлетворяет ключевым исходным требованиям: работает как на Ардуино (очевидно из названия), так и на настольных системах (см раздел «En Vitro Testing» на сайте проекта), но на беглый взгляд показался тяжеловатым и я решил посмотреть другие варианты.
  • Библиотека Sput (Sput Unit Testing Framework for C/C++) https://www.use-strict.de/sput-unit-testing/. Это библиотека легкая настолько, насколько это возможно: всего один заголовочный файл, даже без пары с исходником «.cpp» (все сделано на нескольких макросах). Однако вывод сообщений идет через std::out (что совершенно естественно для libc), который на Ардуино как раз не реализован.

И все-таки мои симпатии перевесили в пользу sput, а проблему с std::out удалось решить несколькими исправлениями (заменой printf на sprintf+Serial.print).

В итоге получился проект sput-ino — порт библиотеки sput на платформу Ардуино с сохранением совместимости с настольными системами с libc

— пример с разделением основного кода и тестов на модули
sput-ino/examples/sput-ino-modules/

— запуск тестов на настольной системе
sput-ino/example-desktop/

— пример с разделением основного кода и тестов на разные проекты — в отдельном репозитории
https://github.com/sadr0b0t/sput-ino-demo

Установим библиотеку

Просто клонируйте репозиторий git https://github.com/sadr0b0t/sput-ino.git в каталог $HOME/Arduino/libraries:

и перезапустите среду Ардуино IDE.

Или на странице проекта github https://github.com/sadr0b0t/sput-ino/ нажмите кнопку Клонировать или скачать > Скачать ZIP (Clone or download > Download ZIP), после этого установите архив sput-ino-master.zip через меню установки библиотек Ардуино: Скетч > Подключить библиотеку > Добавить .ZIP библиотеку. .

Примеры появятся в меню Файл > Примеры > sput-ino (File > Examples > sput-ino)

Простой вариант: однофайловый скетч с кодом и тестами

При внедрении тестов в проект Ардуино придется учитывать некоторые особенности её сборочной системы. В простейшем случае проект (скетч) состоит из одного файла с расширением «.ino». При сборке файл «.ino» с незначительными изменениями конвертируется в «.cpp» (подключается заголовок Arduino.h и еще кое-чего по мелочи), сгенерированный файл компилируется в прошивку.

добавляем какой-то полезный код:

Комплектуем наборы тестов (тест-сьюты).

Все тесты в одном наборе:

и по одному набору на каждый тест:

Здесь я делаю по одному набору на каждый тест плюс один набор на все тесты вместе. На устройстве ограничен ресурс флеш-памяти, все тесты могут не уместиться разом в одну прошивку, поэтому одиночные наборы можно включать/выключать, комментируя отдельные вызовы в главном скетче. Всеобщий набор удобно пускать одной строчкой на настольном компьютере (ну, и на устройстве тоже, если он там все-таки уместится).

Запускаем тесты здесь:

Добавляем обычные setup/loop, запускаем тесты с run_tests в setup в самом начале, предварительно инициировав последовательный порт Serial.begin, чтобы тесты могли печатать сообщения:

Здесь основной код приложения и тесты совмещены внутри одного скетча. Если хотите отключить запуск тестов, нужно закомментировать вызов run_tests, приложение будет работать в обычном режиме.

Компилируем, загружаем на устройство, смотрим результат в окошке монитора последовательного порта (Инструменты > Монитор порта / Tools > Serial monitor)

Результат выполнения на плате ChipKIT Uno32 (клон Ардуино с 32-битным чипом PIC32):

запуск на обычной Arduino Uno (чип AVR 16 бит):

Обратим внимание на пару моментов:

— На PIC32 все тесты завершились успешно, а на AVR один тест со сложением провалился. 34000 + 34000 == 68000 только на 32-битном контроллере PIC32, на AVR размер int = 2 байта (16 бит), максимальное число, которое можно в него положить = 2^16-1=65536-1=65535 (в беззнаковом режиме unsigned). На AVR с 16-битным int происходит переполнение, а на 32-битном PIC32 (и на 64-битном десктопе с x86_64) все ок. Такие особенности платформы стоит учитывать там, где они могут себя проявить, и добавлять в тесты.

— Тест test_led_on_even (включить лампочку, если передано четное число) успешно проходит на обоих контроллерах, но, вообще говоря, использовать чтение digitalRead для проверки успешности записи digitalWrite на реальном железе — не самая хорошая идея.

Во-первых, digitalRead (прочитать значение GPIO в режиме ввода pinMode INPUT) совершенно не обязан выдавать значение, которое было отправлено в порт GPIO с digitalWrite в режиме вывода pinMode OUTPUT: в официальной документации на digitalRead про такое использование метода ничего не говорится, хотя на железке это и срабатывает.

Во-вторых, полагаясь на то, что digitalRead вернет нужное значение после вызова digitalWrite, мы встаем на скользкую дорожку тестирования не своего, но чужого кода. Успешность прохождения теста зависит не только от тестируемого кода, но и от того, как именно реализована связка digitalWrite/digitalRead на конкретном контроллере и нет ли в ней ошибок (кстати, на Arduino UNO с AVR тест провалится, если убрать строку перевода ножки в режим вывода pinMode(13, OUTPUT), на ChipKIT Uno32 с PIC32 тест проходит в любом случае).

Здесь мы не должны проверять, что digitalWrite ЗАПИСАЛ значение в порт GPIO так, что digitalRead смог его прочитать. Здесь мы проверяем, что digitalWriite БЫЛ ВЫЗВАН с нужными нам параметрами. При запуске тестов на реальном железе мы навряд ли сможем это сделать без построения каких-то некрасивых вспомогательных конструкций, но в режиме тестирования на настольной системе это будет легко реализовано при помощи заглушек (см ниже).

Тестируемый код и тесты в отдельные модули

Хранить тесты и весь код в одном большом файле — не самое удобное решение, если проект начинает жить и вырастает чуть дальше чернового наброска.

Теперь мы хотим вынести тесты в отдельный модуль. Модуль тестов должен вызывать тестируемые функции, для этого он должен подключить заголовочный файл с их объявлениями, а значит весь тестируемый код тоже идет в свой отдельный модуль. Здесь мы видим, как внедрение тестов с первых шагов волей-неволей принуждает нас к красоте и порядку внутри проектного дерева.

Система сборки Ардуино позволяет дробить проект на модули: в каталоге со скетчем (.ino) можно размещать дополнительные заголовочные файлы (*.h), файлы с исходниками Си (.c) и C++ (.cpp). Заголовочные файлы будут подключаться как обычно директивой #include, файлы с исходниками C/C++ будут автоматически компилироваться и собираться в единую исполняемую прошивку. Среда разработки Arduino IDE показывает все исходные файлы проекта на вкладках.

Модуль с тестируемым кодом: mylib.h+mylib.cpp

Исходный код модуля. Если хотите здесь взаимодействовать с железом и использовать API Arduino, просто подключайте Arduino.h.

Модуль с тестами: mylib-test.h+mylib-test.cpp

Заголовочный файл — объявления наборов тестов (тест-сьютов), сами тесты объявлять на публику не обязательно:
sput-ino/examples/sput-ino-modules/mylib-test.h

Тесты и наборы тестов: все тоже без изменений, только теперь подключаем mylib.h и Arduino.h вручную.

Главный скетч для исполняемой прошивки: здесь остались только обращения к модулю приложения mylib.h и модулю с тестами mylib-test.h.

Прошиваем, открываем монитор последовательного порта, результат идентичен предыдущему.

Итого, структура проекта:
sput-ino-modules/

— исполняемая прошивка для основного приложения и тестов:
sput-ino-modules/sput-ino-modules.ino

В целом, с такими установками уже можно жить вполне комфортно. Однако не всем может понравится, что тесты и исходники хранятся вперемешку в одном и том же каталоге, а так же то, что для переключения режимов тест/приложение нужно что-то комментировать/раскомментировать в одной и той же исполняемой прошивке, поэтому

Выносим тесты в отдельный проект

Чтобы понять, зачем нам нужно делать дальнейшие не совсем очевидные телодвижения, сначала стоит пояснить в общих чертах, как работает система сборки проектовав Ардуино:

  • В простейшем случае проект состоит из одного файла с расширением «.ino» (скетч), который должен храниться в каталоге с таким же именем (например: «myproj1/myproj1.ino»).
  • В этом же каталоге могут находиться другие исходники — заголовочные файлы «.h», модули на Си «.c», модули на С++ «.cpp», но не другие файлы «.ino».
  • В начале процедуры компиляции все содержимое каталога проекта копируется в другой временный каталог (что-то вроде /tmp/build2b91b1aecd83593cdd811791fcf30e97.tmp/), там файл «.ino» превращается в «.cpp», потом все файлы «.cpp» и «.c» компилятор gcc превращает в объектные файлы «.o», потом все объектные файлы «.o» линкер превращает в единый файл с исполняемой прошивкой «.hex» и (если был выбран вариант «скомпилировать и прошить») программный программатор avrdude отправляет её на устройство (совет: откройте меню Файл > Настройки, включите галочки Показывать подробный вывод для компиляции и загрузки).
  • Общие библиотеки устанавливают в каталог $HOME/Arduino/libraries/ — они будут доступны при компиляции и сборке любых проектов на этом компьютере.

  • Один проект Ардуино может содержать только один исполняемый файл «.ino». Если мы хотим иметь два разных исполняемых файла «.ino», нам нужно сделать два разных проекта в разных каталогах файловой системы.
  • Мы можем разбивать исходный код на модули и подключать их один к другому с помощью директивы #include (например: #include «mylib.h») внутри каталога одного проекта.
  • Мы НЕ можем из одного проекта напрямую ссылаться на модули из других проектов через относительные ссылки, полагаясь на взаимное положение проектов в файловой системе (например: #include «../proj2/proj2lib.h»), т.к. перед сборкой каждый из проектов будет скопирован во временный каталог и эти связи будут нарушены.
  • Даже если мы решим подключить заголовочные файлы «.h» второго проекта не через относительные, а абсолютные ссылки (а мы это делать, конечно, не будем), система сборки все равно не подцепит исходные файлы «.cpp» и «.c», так тоже не получится.
  • Если мы хотим сделать так, чтобы модули одного нашего проекта были доступны для использования внутри другого нашего проекта, мы должны оформить первый проект в виде библиотеки Ардуино.

Значит, теперь такой план:

  • Конвертировать исходный проект в библиотеку Ардуино и разместить её в $HOME/Arduino/libraries/
  • Вынести тесты в отдельный проект, который будет обращаться к исходному проекту как к общедоступной библиотеке

Пример такого проекта (его можно использовать, как шаблон для ваших новых проектов) я вынес в отдельный репозиторий:
https://github.com/sadr0b0t/sput-ino-demo

Скачайте демо-проект себе на компьютер.

Первым делом в каталоге $HOME/Arduino/libraries нужно создать символьную ссылку на каталог проекта

или, если ваша операционная система не умеет в символьные ссылки, просто скопировать туда весь проект и дальше вести работу прямо в библиотеках.

Структура этого проекта — структура библиотеки Ардуино.

Мы сможем подключать заголовочные файлы этой библиотеки из любого проекта Ардуино на текущем компьютере обычным:

Но чтобы это работало, в корень библиотеки нужно положить еще файл с информацией о библиотеке library.properties:
sput-ino-demo/library.properties

(Кстати, можно обойтись без library.properties, если положить все исходники .h, .c, .cpp не в src/, а в корень библиотеки sput-ino-demo/. Они так же будут подключаться/компилироваться с прошивками ссылающихся на них проектов, но мы так делать не будем, т.к. с src/, конечно, аккуратнее.)

Кстати-2, после установки проекта-библиотеки и перезапуска среды Ардуино этот скетч появится в меню Файл > Примеры > sput-ino-demo/sput-ino-demo, но он оттуда откроется только для чтения. Чтобы открыть скетч для редактирования, воспользуйтесь обычным Файл > Открыть и найдите его в файловой системе.

Кстати-3, файлы проекта-библиотеки mylib.h и mylib.cpp теперь не будут появляться в окне среды Arduino IDE (т.к. они находятся за пределами каталога скетча sput-ino-demo/), вам придется редактировать их в вашем любимом текстовом редакторе. Придется это принять как данность, кому к сожалению, а кому и к счастью.

Кстати-4, теперь у вас в проекте может быть более одного скетча «.ino».

Итак, с библиотекой и запускаемым скетчем разобрались, теперь к тестам.

Тесты мы разместим теперь в отдельном каталоге:
sput-ino-demo/test/

Тесты для настольной системы обсуждаем далее.

Запуск тестов на настольном компьютере

Итак, с запуском тестов на устройстве в целом разобрались. Теперь посмотрим, получится ли запустить эти же тесты на настольном компьютере. Для чего вообще запускать тесты на настольном компьютере? Во-первых, это удобно и быстро: поменяли в исходниках пару строк, быстро пересобрали, запустили тесты, здесь же в консольке посмотрели результат; в случае с устройством одна процедура прошивки может занять больше времени, чем все описанные выше действия. Во-вторых, некоторые ситуации, которые можно легко отработать в настольной симуляции (или, точнее, на макете, mock), на железке будет воспроизвести проблематичнее (например, отработать получение значения с одного или нескольких датчиков, отследить правильность ответной реакции). Так же существует мнение, что запускать тесты на микроконтроллерах вообще не правильно, а правильно их запускать только на настольных системах.

В общем, мы хотим:

  • запускать тесты на настольной системе без прошивки в устройство,
  • это должны быть те же самые тесты и те же самые тестируемые участки приложения, которые мы запускаем на устройстве.

Для того, чтобы решить эту задачу, во-первых, у нас должна быть библиотека для модульного тестирования, которая запустится одновременно и на железке с Ардуино и на настольной системе. Как было сказано в начале статьи, библиотека sput-ino по этому условию проходит: исходная библиотека sput работает на настольных системах с libc, sput-ino — порт библиотеки sput на платформу Ардуино с полным сохранением совместимости API, а также с поддержкой обеих платформ в одной библиотеке. Короче, тесты, использующие библиотеку sput-ino, можно компилировать как для настольных систем с libc, так и для платформы Ардуино.

Далее, условно разделим исходники на две части:

  • части приложения, которые не взаимодействуют с железом, не используют API Ардуино.
  • части приложения, которые взаимодействуют с железом, используют API Ардуино.

Части приложения НЕ используют API Ардуино

В первом случае (у нас это a_plus_b и a_minis_b) всё ясно — это части приложения, написанные на чистом Си/С++. Скорее всего это какие-то математические, алгоритмические или структурные блоки. Как они компилировались и запускались на Ардуино, точно так же они скомпилируются и запустятся с тестами на настольной системе без дополнительных телодвижений. Однако даже с ними не стоит забывать о различиях между платформами (выше мы уже рассмотрели случай с тестом, провалившимся из-за переполнения 16-битного int на чипе AVR, когда на 32-битном PIC32 и 64-битном настольном Intel/AMD все проходит). Такие отличия стоит учитывать при написании тестов и время от времени гонять тесты на целевом устройстве.

Части приложения используют API Ардуино

Во втором случае (у нас это led_on_even) ситуация кажется еще интереснее. Допустим, мы хотим протестировать функцию, которая помимо других действий обращается к железу контроллера через родные ардуинные digitalRead или digitalWrite. Совершенно очевидно, что никаких digitalRead и digitalWrite в стандартных библиотеках libc на настольной системе нет, этот блок приложения просто так не скомпилируется, тем более не запустится (и где у ноутбука пины GPIO?). Что делать? Неужели искать эмулятор или симулятор плат Ардуино и каким-то образом тащить все это счастье к себе в проект? Компилировать исходники Ардуино под x86? Писать симулятор чипа AVR со всей его внутренней регистровой кухней и драйверами самому?

Примерно такие мысли пронеслись у меня в голове, когда я первый раз подумал о том, что нужно каким-то образом запустить значительную часть приложения, написанного специально для Ардуно, на обычном десктопе. Однако первые практические шаги решения почти сразу показали, что масштаб проблемы весьма преувеличен. Я бы сказал, что никакой проблемы вообще нет.

Да, для каждого используемого вызова API Ардуино мы добавляем в проект собственную заглушку: объявляем функцию с таким же именем и сигнатурой (тип возвращаемого значения и аргументы), добавляем ей собственную реализацию. Нет, реализация заглушки не будет иметь никакого отношения к дереву исходников или к железу оригинальной Ардуино. В некоторых случаях заглушка может представлять пустую функцию вообще без кода.

Здесь далеко не все вызовы API Ардуино, мы добавили только те функции и константы, которые необходимы для компиляции и запуска приведенных выше тестов (плюс еще парочка лишних вызовов для примера). Заглушки для остальных функций можно добавлять по мере необходимости.

В общем, этого уже достаточно, чтобы скомпилировать и запустить наши тесты на настольном компьютере. Добавляем главный исполняемый файл с main:
sput-ino/example-desktop/mylib-test-main.cpp

(видим тесты из модульной версии проекта Ардуино)

здесь же в консольке:

Саксэс, саксэс, саксэс. На этой оптимистической ноте можно было бы закончить статью, но лучше разберем еще один обещанный выше случай.

Расширение API макета; тесты, которые получится запускать только на настольной системе

Выше мы отметили, что мы не должны проверять, что digitalWrite ЗАПИСАЛ значение в порт GPIO так, что digitalRead смог его прочитать. Мы проверяем, что digitalWriite БЫЛ ВЫЗВАН с нужными нам параметрами. Другими словами, мы хотим проверить, что digitalWrite был вызван с определенными параметрами, но мы не хотим использовать для этого digitalRead. Да, если говорить конкретно про пару digitalWrite/digitalRead, еще можно как-то рассуждать о целесообразности такого желания (ведь при запуске тестов на настольной системе digitalRead все равно является заглушкой и мы можем вставлять в нее любой удовлетворяющий нас код), но мы вполне можем захотеть проверить обращения и к другим вызовам API Ардуино, у которых нет даже такой пары (например, pinMode).

Короче, давайте добавим к заглушкам API Ардуино еще несколько расширенных вызовов и посмотрим, как будут выглядеть с ними наши старые тесты.

Для порядка объявим дополнительные вызовы для макета в отдельном заголовочном файле, я назвал его _Arduino.h (в начале нижнее подчеркивание):
sput-ino/example-desktop/_Arduino.h

Как видим, реализация _get_pin_value идентична заглушке для digitalRead, но _get_pin_mode уже не имеет прямого аналога в API Ардуино.

Далее пишем новую версию теста test_led_on_eventest_led_on_even_desktoponly, использующую новый вызов _get_pin_value вместо digitalRead. Этот тест уже не скомпилируется и не запустится на устройстве, поэтому мы его размещаем в отдельном модуле за пределами проекта Ардуино — в каталоге с исходными файлами для тестирования на настольном компьютере sput-ino/example-desktop/

Немного поправим исполняемый файл — теперь у нас два набора тестов: кросс-платформенные тесты и тесты, которые запускаем только на десктопе.

чуть правим сборочный скрипт (добавляем mylib-test-desktoponly.cpp)

Хороший пример: потестируем обработчик прерываний

Допустим, у нас есть небольшой проект с модулем управления шаговым мотором:

  • Мотор шагает на фронте HIGH > LOW,
  • модуль проверяет выход за границы с концевых датчиков и
  • программно считает сделанные шаги.

Мотор шагает в фоне по сигналам из программного обработчика прерываний от таймера, несколько тысяч (или десятков тысяч) раз в секунду. Один шаг — 3 тика таймера: тик 1 — проверяем границы (концевые датчики), тик 2 — взводим ножку STEP в HIGH, тик 3 — делаем шаг: сбрасываем STEP в LOW, увеличиваем счетчик.

Код управления мотором может выглядеть примерно так:

Вызов timer_handle_interrupts — обработчик прерывания от таймера, вызывается на каждый тик таймера определенное заранее количество раз в секунду (как запустить таймер на Ардуино: arduino-timer-api).

Теперь представьте, что код загружен на контроллер, мотор подключен, крутится, но что-то не в порядке: может вращается слишком быстро, может не докручивает часть предполагаемого пути, может что-то еще. Подключение электроники в порядке, проверено на простых тестах, проблема явно в программе. Как бы вы стали отлавливать ошибку? Допустим, у вас есть полноценный аппаратный отладчик с просмотром памяти и переменных, точками останова и красивой поддержкой в IDE. Будем ставить брейкпоинт в обработчик прерывания и проверять значения переменных все 100500 тиков? Ставить точку останова с динамическим условием в надежде поймать проблему в середине цикла? Возможно какой-то из этих или других приемов поможет отловить и исправить проблему.

Но посмотрим, как будет выглядеть процедура отладки этого участка при помощи автоматических тестов:

Прерывания от таймера мы симулируем элементарным ручным вызовом обработчика test_timer_handle_interrupts. Как видим, таким образом можно легко контролировать каждый тик: 1й, 2й, 3й, 103й, предпоследний, последний, — и после каждого тика спокойно делать любые нужные проверки.

Источник

Adblock
detector