Подключение модуля l298n к ардуино

Подключение L298N к Ардуино

Сегодня мы хотим рассказать вам о том, как подключить драйвер L298N к Arduino и для чего он в целом может понадобиться. Речь пойдет о цифровом двухканальном устройстве, которое способно коммутировать большой ток. Это значит, что оно поможет нам в тех проектах, где необходимо применение управления более мощными моторами постоянного тока (уж простите за тавтологию).

Кроме промышленного сектора, шаговые двигатели находят применение в сфере любителей электроники и радиотехники. Работаете над конструированием робота? Желаете заставить двигаться сложный самодельный механизм либо движущиеся устройства? Модернизируете станок с ЧПУ? Во всех этих случаях не обойтись без рассматриваемого нами механизма.

Обратимся к техническим параметрам модуля:

  • напряжение питания: до 35V;
  • рабочий ток (поканально): 2 А;
  • потребляемый логикой ток: 36mA;
  • периодический ток (80% — вкл, 20% — выкл): 2,5 А;
  • кратковременный ток: 3А;
  • рабочие температуры: -25 … +135 С;
  • габариты: 43.5 х 43.2 х 29.4 мм;
  • вес: около 33 г.

Как вы понимаете, устройство имеет массу преимуществ – оно помогает управлять скоростью вращения моторов в обоих направлениях, не требует внешних компонентов для начала работы.
Распиновка контактов показана на скриншоте:

Подключение AD9833 к Ардуино

Для реализации простого проекта нам понадобятся такие компоненты:

  1. плата расширения Ардуино Uno (Arduino Nano и другие совместимые микроконтроллеры также могут подойти)
  2. модуль платы управления моторами L298N
  3. шаговые двигатели (2 шт)
  4. соединительные провода
  5. источник питания (9 В.)

Внешний вид макета (и соответственно схема подключения) выглядит следующим образом:

Теперь зальем скетч для тестирования (так называемого разгона с регулировкой скорости) мотора:
К слову, в подобной схеме можно использовать такие шаговые двигатели как Nema 17 (детальнее о нем можно почитать ТУТ), а источник питания заменить на две стандартные пальчиковые батарейки.

Модуль драйвера L298N довольно сложен в настройке, но если вы с нею справитесь, то получите достойный инструмент контроля ШД в проектах любой сложности. На этом пока все! До новых встреч!

Источник

Ардуино: драйвер L298N для мотора постоянного тока

Чтобы управлять вращением мотора, любому контроллеру необходимо специальное устройство, которое часто называют драйвером (от англ. driver — водитель). В уроке «управление двигателем постоянного тока» мы уже пробовали запускать и вращать в разные стороны мотор двумя способами: с помощью одного транзистора и с помощью микросхемы драйвера L293D.

На этот раз, попробуем использовать более мощный двухканальный драйвер L298N, который часто можно встретить в виде модуля красного цвета (хотя встречаются зеленые и синие модели).

Как и в случае L293N, драйвер представляет собой полный H-мост, главная функция которого — менять полярность на нагрузке. А если в качестве нагрузки будет мотор постоянного тока, то смена полярности приведет к смене направления его вращения. Это то, что нам нужно.

Спецификация модуля L298N:

  • напряжение питания двигателей: до 35 В;
  • рабочий ток (на каждый канал): 2 А;
  • периодический ток (80% — вкл, 20% — выкл): 2,5 А;
  • кратковременный ток: 3 А;
  • вес: 33 г.

Драйвер L298N работает с более высоким током, чем L293D. С помощью L298N мы можем управлять и слабыми моторчиками типа n20 и мощными моторами, такими как JGA25 или даже JGA37 с крутящим моментом до 20-25 кг/см. Хватит для большинства DIY проектов!

Назначение элементов и контактов на плате драйвера L298N

Посмотрим внимательнее на модуль и разберемся с его контактами.

Логика микросхемы L298N питается напряжением 5 Вольт. Для этого на модуле предусмотрен стабилизатор напряжения 78M05. На вход этого стабилизатора можно подавать напряжение до 35 В, а на выходе всегда получается 5 В. Рабочий ток у 78M05 небольшой — до 500 мА. Однако, при желании, от него можно питать и саму плату Ардуино Уно, к которой мы будем подключать драйвер.

Тройная клемма снизу отвечает за питание модуля. Самый левый контакт — питание моторов. Сюда можно подавать до 35 В. Средний контакт — земля, которая должна быть общей для модуля и контроллера. Правый контакт имеет двоякую функцию. Если на модуле стоит перемычка питания стабилизатора, то на этом контакте будет +5В и к нему можно ничего не подключать, либо питать от него контроллер. Но если перемычку убрать, то к этому контакту нужно будет непременно подключить +5В от контроллера, чтобы питать драйвер. В нашем примере мы будем ориентироваться именно на вариант без перемычки.

Две другие винтовые клеммы (OUT1/2 и OUT 3/4) служат для подключения моторов. Надо отметить, что моторы постоянного тока неполярные, но от того на какой контакт мотора подается плюс, а на какой минус, зависит направление их вращения.

Наконец, осталось разобраться с контактами управления. Их по три штуки на каждый мотор. Контакты ENA и ENB позволяют управлять моторами с помощью ШИМ сигнала. Если ENA и ENB подключить строго к +5 В, то моторы будут всегда вращаться с максимальной возможной скоростью. Именно для этого режима на модуле предусмотрены две перемычки рядом с ENA и ENB.

С помощью контактов IN1,IN2,IN3,IN4 задаётся режим работы моторов. Таблица режимов для двигателя A имеет вид:

Режим IN1 IN2
Вращение в одну сторону 1 0
Вращение в обратную сторону 0 1
Блокировка мотора 1 1
Отключение мотора 0 0

Тут следует пояснить последние два режима. Если нам необходимо резко остановить мотор, то выбираем режим блокировки. Для плавной остановки — выбираем «отключение мотора»

Подключение драйвера L298N к Ардуино Уно

Чтобы попробовать драйвер в деле, подключим его к контроллеру Ардуино Уно и к любому, попавшему под руку, небольшому мотору постоянного тока. В данном уроке мы используем самый простой мотор с напряжением питания 1,5-3 Вольта. Для питания этого мотора нам будет достаточно двух пальчиковых батареек. В такой схеме просто невозможно запитать микросхему драйвера от встроенного стабилизатора, поэтому питание +5В будем брать от Ардуино.

Также отметим, что при данной схеме подключения с внешним питанием +5 В, нам нужно убрать соответствующую перемычку, о которой мы говорили выше (перемычка питания от стабилизатора)!

Ну и раз уж мы планируем управлять скоростью вращения, уберем перемычку с контакта ENA.

Принципиальная схема

Внешний вид макета

Программа для драйвера мотора L298N

Напишем простую программу, которая будет вращать мотор в одну сторону 3 секунды с максимальной скоростью, и затем 3 секунды в обратную сторону с более медленной скоростью.

Загружаем программу на Ардуино, затем подключаем к драйверу элементы питания и смотрим как ведёт себя моторчик.

Следует отметить, что данная программа не гарантирует вращение мотора с какой-то конкретной скоростью. Мы лишь можем менять мощность, передаваемую на мотор, с помощью изменения коэффициента заполнения ШИМ сигнала (duty cycle). Подробнее о ШИМ сигнале можно узнать в одном из наших уроков.

Заключение

Итак, модуль драйвера L298N оказался не таким сложным, как могло показаться. Все драйверы имеют практически схожие контакты управления: EN,IN1,IN2. Бывает, что отдельный вход EN отсутствует, и тогда ШИМ сигнал подается на IN1,IN2. Разобравшись с одним драйвером, мы можем с легкостью применять в своих проектах и другие модели.

Как уже было написано, L298N является достаточно мощным чтобы потянуть большинство моторов, применяемых в DIY проектах. Это и популярные пластиковые желтые моторы с редуктором и более мощные металлические JGA25 и JGA37.

Отдельно следует отметить и ещё одно распространенное применение L298N. С помощью этого драйвера можно управлять биполярными шаговыми двигателями, хотя и не настолько эффективно, как это делают специализированные драйвера типа A4988.

Источник

Обзор драйвера мотора на L298N

Автор: Сергей · Опубликовано 20.12.2018 · Обновлено 25.11.2021

Одним из самых простых и недорогх способов управления двигателями постоянного тока является модуль L298N Motor Driver с Arduino. Он может контролировать скорость и направление вращения двух двигателей постоянного тока, а так же управлять биполярным шаговым двигателем (типа NEMA 17).

Технические параметры

► Напряжение питания логики модуля: 5 В
► Потребляемый ток встроенной логики: 36 мА
► Напряжение питания драйвера: 5 В – 35 В
► Рабочий ток драйвера: 2 А (пиковый ток 3 А)
► Габариты: 43.5 мм х 43.2мм х 29.4мм

Общие сведения

Основной чип модуля это микросхема L298N, состоящая из двух H-мост (H-Bridge), один для выхода A, второй для выхода B. H-мост широко используется в электронике и служит для изменения вращения двигателем, схема H-моста содержит четыре транзистора (ключа) с двигателем в центре, образуя H-подобную компоновку. Принцип работы прост, при одновременном закрытие двух отдельных транзистора изменяется полярность напряжения, приложенного к двигателю. Это позволяет изменять направление вращения двигателя. На рисунке ниже, показана работа H-мостовой схемы.

Для управления скоростью двигателя постоянного тока используется метод PWM (Широтно-импульсной модуляции).

Модуль L298N содержит разъем для подключения питания, ряд перемычек для настройки модуля, два выхода A и B и разъем управления, которые регулируют скорость и направление вращения, назначение каждого можно ознакомится ниже:

Вывод Vss — питание двигателей, от 5 до 35 В;
Вывод GND — общий вывод заземления;
Вывод Vs — питание для логической схемы;
Перемычка ENA — используются для управления скоростью двигателя A;
Вывода IN1 и IN2 — используются для управления направлением вращения двигателя A;
Вывода IN3 и IN4 — используются для управления направлением вращения двигателя B;
Перемычка ENB — используются для управления скоростью двигателя B;
Выходы OUT1 и OUT2 — разъем для двигателя A;
Выходы OUT3 и OUT4 — разъем для двигателя B;

Принципиальная схема модуля L298N

Питание модуля.
Питание модуля L298N осуществляется через трех контактный разъем, шагом 3,5 мм:
Vs — источник питания двигателей, 3B — 35B
GND — земля
Vss — источник питания модуля, 4,5В — 5,5В
Фактически у модуля L298N, есть два контакта питания, а именно. «Vss» и «Vs». От «Vs» питаются двигатели с допустимым напряжением от 5 В до 35 В, а от «Vss» питается логическая схема модуля 4,5В до 5,5В. На плате установлен встроенный стабилизатор напряжения на 5 Вольт (78M05), его можно включить или отключить с помощью перемычки. Когда перемычка установлена, стабилизатор включен и питает логику модуля (Vss) от источника питания двигателя (Vs). При включенном стабилизаторе, вход «Vss» работает как выход и обеспечивает 5В с током 0,5 А. Когда перемычка убрана, стабилизатор отключен и необходимо отдельно подключить питание 5 Вольт на вход Vss.

Внимание! Нельзя установить перемычку, если напряжение двигателя выше 12 Вольт.

Падение напряжения L298N
Падение напряжения драйвера L298N составляет около 2 В, это связано с внутренним падением напряжения в транзисторах в цепи H-мосте. Таким образом, если мы подключим 12 В к источнику питания двигателя, то двигатели получат напряжение около 10 В. Это означает, что двигатель на 12 В не будет работать с максимальной скоростью, для получения максимальной скорости, напряжение поданное на двигателя должен быть выше напряжения (2 В), чем потребность в фактическом напряжении двигателя. Учитывая падение напряжения на 2 В, если вы используете двигатели 5 В, вам необходимо обеспечить питание 7 В. Если у вас 12-ваттные двигатели, то напряжение питания вашего двигателя должно составлять 14 В.

Управления скоростью
Разъемы управления скоростью ENA и ENB используются для включения и выключения управления скоростью двигателей. Когда перемычка установлена, двигатель вращается с максимальной скоростью. Если необходимо управлять скоростью двигателей, необходимо убрать перемычку и подключить выводы к контактам с поддержкой PWM на Arduino.

Подключение L298N к Arduino (коллекторный двигатель)

Необходимые детали:
Arduino UNO R3 x 1 шт.
► Драйвер мотора на L298N (5-35V, 2A) x 1 шт.
► Коллекторный двигатель x 2 шт.
► Комплект проводов DuPont 2.54 мм, 20 см x 1 шт.

Подключение:
Первым делом необходимо подключить источник питания 12B к двигателям, в примере используется распространенные двигатель постоянного тока, рассчитанные на 3B . . . 12B (применяемые в робототехнике). Учитывая внутреннее падение напряжения на микросхеме L298N, двигатели получат 10 В и будут вращаться не в полную силу.
Далее, нужно подключить 5 вольт на логическую схему L298N, для этого воспользуемся встроенным стабилизатором напряжения, который работает от источника питания двигателя, поэтому, перемычка EN должна быть установлена.
Теперь осталось подключить управляющие провода ENA, IN1, IN2, IN3, IN4 и ENB к шести цифровым выводам Arduino 9, 8, 7, 5, 4 и 3. Обратите внимание, что выводы Arduino 9 и 3 поддерживают ШИМ. Теперь, подключаем двигатели, один к клемме A (OUT1 & OUT2), а другой к клемме B (OUT3 & OUT4). Принципиальная схема подключения приведена ниже.

Осталось подключить Arduino к источнику питания и загрузить скетч.

Источник

Adblock
detector