Pickit2 подключение для программирования

Содержание

Программирование микроконтроллеров AVR через программатор Microchip PicKit2

Если вы, как и я, используете в своих конструкциях как микроконтроллеры PIC, так и чипы AVR, было бы удобно для программирования обеих линеек микросхем использовать один и тот же программатор. Кстати, не так давно Microchip приобрела компанию Atmel и фактически сейчас обе линейки выпускаются одной и той же компанией. Посему можно предположить окончание многолетнего холивара на тему что же лучше. Оба типа контроллеров имеют свои недостатки и преимущества, но это тема для другой статьи или видеоролика.

Случилось так что когда-то давно я, как и многие другие, начал знакомство с миром микроконтроллеров с какой-то конструкции на микроконтроллере PIC16F84. Через много лет я купил свой первый фабричный программатор для контроллеров PIC. Это был фирменный (оригинальный) PicKit2, который я привез с международной конференции Microchip, которая проходила в Питере в 2009 году.

Купил я его тогда на конференции с хорошей скидкой в 50 процентов. Сейчас можно купить клон такого программатора на Алиэкспресс очень дешево и он будет работать не хуже оригинального. Или, в крайнем случае сделать клон программатора самому, например как описано в этой статье.

Нужно сказать, что программатор PicKit2 уже не поддерживается компанией Microchip (в плане обновления прошивки или управляющей программы) но это не мешает ему отлично работать и по сей день. Сейчас Microchip продвигает более новую версию — PicKit3, который внешне выглядит почти также как и вторая версия. С третьим я пока не имел дела, для моих задач мне вполне хватает второго.

Обычно если мне нужно запрограммировать микроконтроллер Pic я использую программатор PicKit2 с его родной программой PicKit2.61, а если я хочу прошить, например, контроллер ATMega16, то делаю это через программатор USBAsp который можно купить в Китае за полтора доллара.

Однако сейчас появилась возможность использовать для прошивки как PIC так и AVR один программатор — Microchip PicKit2 или его клон, с использованием Бесплатной программы AVRDude, которая сейчас поддерживает PicKit2. Несмотря на то, что AVRDude — это консольное приложение и в чистом виде требует от пользователя навыков работы с командной строкой, но сейчас есть очень хорошая программа — оболочка для AVRDude, которая называется AVRDUDESHELL и позволяет очень удобно работать с AVRDude, не заморачиваясь с командной строкой. Фактически, работая в AVRDUDESHELL вы можете вообще не знать о существовании AVRDude. Скачать программу AVRDUDESHELL можно здесь. Сама AVRDude уже входит в состав AVRDUDESHELL и отдельно ее устанавливать не нужно.

Программатор PicKit2 имеет шести контактный разъем. Для программирования микроконтроллеров PIC используются первые пять контактов. Шестой — дополнительный, при программировании пиков он не задействован.

Разъем программирования PicKit2

VPP / MCLR
VDD напряжение питания целевого устройства
VSS земля
ICSPDAT / PGD
ICSPCLK / PGC
AUX

Для программирования контроллеров AVR нам потребуется сделать специальный шлейф и использовать все шесть контактов PicKit2. Шлейф делаем в соответствии с таблицей ниже:

Шлейф может выглядеть например так:

Для работы подключаем PicKit2, шлейфом соединяем его с программируемым устройством (или адаптером микроконтроллера с Zif панелькой), Запускаем AVRDUDESHELL и выбираем в списке программаторов нужный нам PicKit2. Загружаем файл прошивки и программируем контроллер. Всё предельно просто.

Возможно вам потребуется USB драйвер программатора PicKit2. ВЫ можете скачать его по это ссылке. Он входит в состав родной программы Microchip PicKit2 V2.61. На сайте Microchip вы ее уже не найдете, но можете скачать здесь (см. ниже). Эта небольшая программка пригодится вам и для прошивки контроллеров PIC.

Источник

Программатор-Отладчик PICkit™ 2. Руководство пользователя

Глава 1. Обзор Программатора-отладчика PICkit 2

1.1. Введение

Эта глава описывает свойства программатора — отладчика PICkit 2 и меню программного обеспечения PICkit 2 Programmer.

1.2. Состав комплекта PICkit 2 (номер для заказа PG164120)

Комплект PICkit 2 (номер для заказа PG164120) содержит следующее:

Комплекты PICkit Starter Kit (номер для заказа DV164120) и PICkit 2 Debug Express (номер для заказа DV164120) дополнительно содержат демонстрационные платы с установленным PIC микроконтроллером.

1.3. Программатор-отладчик разработчика PICkit 2

Программатор-отладчик разработчика PICkit 2 это недорогое средство разработки, поддерживающее программирование большинства микроконтроллеров, микросхем памяти и KeeLOQ производства компании Microchip Technology Inc. Для получения полного списка поддерживаемых микросхем обратитесь к файлу README на диске PICkit 2 Starter Kit.

Поддержка новых микросхем может быть добавлена при выходе обновлений программного обеспечения PICkit 2. Последние версии программного обеспечения PICkit 2 доступны на сайте компании Microchip: www.microchip.com/pickit2

PICKit 2 так же может использоваться для внутрисхемной отладки некоторых микроконтроллеров. За подробной информацией обратитесь к главе 4 «PICkit 2 Debug Express» данного руководства.

Замечание
Программатор PICKit 2 не предназначен для промышленного программирования. Для производственных целей рекомендуется промышленный программатор MPLAB PM3 или другие программаторы, предназначенные для промышленных применений.

Рисунок 1.1. Программатор PICkit 2.

1.3.1 Подключение к USB порту

PICkit 2 имеет USB разъем типа mini-B. Подключите PICkit 2 к компьютеру используя кабель из комплекта поставки.

1.3.2 Светодиоды состояния

Светодиоды состояния отображают статус программатора/отладчика PICkit 2.

1.3.3 Кнопка

Кнопка может быть задействована для запуска программирования целевого устройства, для этого установите галочку на пункте Programmer>Write on PICkit Button.

Кнопка также может использоваться для ввода PICkit 2 в загрузочный режим, в этом режиме можно обновить программное обеспечение программатора PICkit 2.

1.3.4 Разъем для подключения программируемого устройства

Программирующий разъем имеет 6 выводов для подключения целевого устройства. Назначение выводов указано на рисунке 1.2.

Для получения подробной информации о том, как использовать PICkit 2 для внутрисхемного программирования обратитесь к главе 3 «Использование внутрисхемного программирования (ICSP)» данного руководства.

Рисунок 1.2. Разъем программирования.

Замечание
Функции выводов программирующего разъема отличаются при программировании микросхем памяти EEPROM и микросхем KeeLOQ. Для получения подробной информации по подключению конкретной микросхемы обратитесь к файлу «PICkit 2 Programmer Readme» (меню Help→Readme).

1.4. Программное обеспечение PICkit 2

Программное обеспечение PICkit 2 Programmer позволяет программировать все поддерживаемые программатором PICkit 2 микросхемы. Интерфейс программы приведен на рисунке 1.3. Для получения подробной информации обратитесь к главе 2 «Начало работы» данного руководства.

Рисунок 1.3. Интерфейс программы PICkit 2 Programmer.

Глава 2. Начало работы

2.1. Введение

В этой главе описано, как быстро начать работу с программатором/отладчиком PICKit 2. Непосредственно работа с программатором описана в главе 3 «Использование внутрисхемного программирования (ICSP™)», внутрисхемная отладка – в главе 4 «PICkit 2 Debug Express».

2.2. Подключение PICKit 2

2.3. Установка программного обеспечения

Вставьте CD-ROM PICkit 2 Starter Kit в привод, произойдет автоматический запуск установочной программы. Если установщик не запуститься – откройте вручную файл PICkit_Starter_Kit_Welcome.htm. Наиболее новая версия программного обеспечения всегда доступна на сайте www.microchip.com/pickit2

После установки запустите программу PICkit 2 Programmer. Внешний вид оболочки приведен на рис. 2.1.

Рисунок 2.1. Оболочка программы PICkit 2 Programmer.

2.4. Подключение к программируемой микросхеме

PICKit 2 поддерживает программирование множества микроконтроллеров Microchip PIC и микросхем памяти EEPROM. Список поддерживаемых устройств содержится в файле readme на установочном CD или вызывается из меню Help→Readme.

При запуске программы производится автоматическое определение типа подключенного контроллера и его отображение в окне Configuration (рис.2.2).

Рисунок 2.2. Определение подключенного контроллера.

Если устройство не определилось – проверьте подачу питающего напряжения (см. п.2.5) и надежность подключения к целевой плате.

Можно в любой момент выбрать нужное вам семейство, воспользовавшись меню Device Family, при этом PICKit 2 попытается соединиться с целевым устройством (рис.2.3).

Рисунок 2.3. Выбор программируемого семейства

При выборе семейства Baseline, а также микросхем KEELOQ® и EEPROM, необходимо также выбрать конкретное изделие из выпадающего списка (рис.2.4), т.к. в этих микросхемах нет идентификационных битов (device ID).

Внимание!
При выборе контроллера из семейства Baseline будьте внимательны – эти контроллеры не имеют идентификатора (device ID) и в случае неправильного выбора устройства возможно стирание калибровочной константы OSCCAL

Рисунок 2.4. Выбор контроллеров базового семейства.

2.5. Управление питанием

При работе с программатором PICKit 2 возможны два варианта питания целевой микросхемы: от PICKit 2 и внешнее питание.

2.5.1. Питание от PICKit 2

Если используется питание от PICKit 2, отдельно подавать питание на плату не нужно, т.к. программатор измерит его и не даст подать питание через себя. Если плата не запитана, то оболочка дает возможность установить значение питающего напряжения, подаваемого с PICKit 2 (рис. 2.5).

Рисунок 2.5. Включение питания от PICkit 2.

Для подачи напряжения выберите значение On.

Замечание
Если PICKit 2 не увидит внешнего напряжения питания на целевой плате, то он автоматически выдаст питание на плату при программировании, независимо от выбранного значения On.

В случае короткого замыкания или превышении максимального тока запитки выдается сообщение об ошибке (рис. 2.6). Потребление целевой платы не должно превышать 25 мА, при этом время нарастания питающего напряжения при включении составляет не более 500 мкс.

Внимание!
Максимальный ток через порт USB ограничен значением 100 мА. В случае, если целевая плата и PICKit 2 требуют большего суммарного тока, необходимо использовать внешнее питание

Рисунок 2.6. Ошибка VDD

2.5.2. Внешнее питание

Целевая плата может питаться от собственного источника питания. PICKit 2 автоматически детектирует наличие внешнего питания и, в случае его наличия, в оболочке меняется заголовок окна с VDD PICkit 2 на VDD Target, отключается возможность подачи питания и отображается значение внешнего питающего напряжения (рис. 2.7). Щелчок по галочке Check обновляет отображенное питающее напряжение. В случае пропадания внешнего питания оболочка переключиться в режим подачи питания от PICKit 2 (см. п.2.5.1).

Замечание
Разрешенный диапазон напряжений внешнего питания составляет 2.5..5В

Рисунок 2.7. Внешнее питание.

2.6. Импорт .hex файлов

Для импорта файла прошивки в формате .hex выберите пункт меню File→Import HEX. В случае, если в файле прошивки отсутствуют какие-либо конфигурационные биты, оболочка выдаст предупреждение. Для правильного сохранения текущей прошивки в файл .hex выберите File→Export в меню оболочки MPLAB IDE.

Рисунок 2.8. Импорт hex файла.

2.7. Программирование микросхем

После правильного выбора семейства микросхем и импорта файла прошивки возможно программирование целевой микросхемы по кнопке Write (рис. 2.9).

Рисунок 2.9. Кнопка Запись.

Микросхема будет стерта и запрограммирована загруженной прошивкой.

Большая часть микроконтроллеров поддерживает режим общего стирания (Bulk Erase), доступный при минимальном напряжении питания, часть контроллеров также поддерживают блочное стирание (Row Erase). Процедура блочного стирания занимает больше времени, нежели общее стирание, но доступно при пониженных напряжениях питания. PICKit 2 автоматически переключается на блочное стирание при невозможности выполнения общего стирания. Если микроконтроллер не поддерживает блочное стирание – выдается предупреждение. Список контроллеров, поддерживающих блочное стирание, доступен в файле readme.

Ход выполнения процедуры программирования отображается в строке статуса. В случае, если программирование прошло успешно, строка становиться зеленого цвета и на ней пишется Programming Successful (рис. 2.10).

Рисунок 2.10. Успешное завершение записи.

В случае ошибки строка становится красной и на ней пишется Programming Failed (рис. 2.11). В этом случае попробуйте повторить процедуру программирования.

Рисунок 2.11. Ошибка программирования.

В других случаях строка статуса становится желтой и на ней пишется причина предупреждения, например, нет соединения с целевым устройством (рис. 2.12).

Рисунок 2-12. Предупреждение при записи.

2.7.1. Программирование определенного раздела памяти

Если микроконтроллер имеет встроенную память EEPROM, то возможно отключение ее программирования в процессе общего программирования микросхемы. При ручном стирании будет стерта вся память. Выбор раздела, помимо программирования, влияет аналогичным образом и на процедуры верификации и считывания.

2.7.2. Автоматическая загрузка файла прошивки

Перед каждым программированием (по нажатию кнопки Write) оболочка автоматически проверяет дату импортированного файла .hex с датой этого же файла на диске. Если на файл на диске более новый, то производится автоматический импорт этого файла.

Данная особенность позволяет автоматически использовать наиболее новую прошивку, сгенерированную MPLAB IDE, в т.ч. при режиме работы Program on PICkit Button, т.е. просто нажимая кнопку на корпусе программатора без переключения в окно оболочки. Этот режим работы настраивается в меню Tools→Program on PICkit Button.

2.8. Верификация прошивки

Функция верификации сравнивает содержимое микросхемы с импортированным .hex файлом. Производится сравнение памяти программ, EEPROM, идентификационных битов и битов конфигурации. В пункте меню Programmer→Verify on Write можно настроить автоматическую верификацию при программировании.

Рисунок 2.13. Кнопка верификации.

Если верификация прошла успешно, строка состояния становиться зеленой и на ней появляется надпись Device Verified. Если нашлось несоответствие, то строка становиться красной и на ней пишется область памяти, где произошло несовпадение.

2.9. Чтение прошивки

Считывание прошивки из микросхемы производится по нажатию кнопки Read. Содержание областей памяти отображается в соответствующих окнах. Если при программировании для микросхемы была установлена защита кода, то при считывании будут считаны нули.

Рисунок 2.14. Кнопка чтения.

2.10. Защита кода

Память программ микроконтроллера и память данных EEPROM имеет защиту от считывания (защиту кода). Для защиты необходимо:

При обращении к защищенным областям памяти программатор считывает нули. Для снятия защиты с вашей прошивки необходимо выключить защиту кода и EEPROM и перепрограммировать микросхему.

Рисунок 2.15. Включение защиты кода.

2.11. Стирание памяти и проверка памяти микросхемы на чистоту

Функция стирания очищает содержимое всех областей памяти (память программ, EEPROM, идентификационные биты и биты конфигурации), независимо от установленных параметров программирования (см. п.2.7).

Для стирания памяти нажмите кнопку Erase.

Замечание
Функция стирания всегда использует режим общего стирания, который требует напряжение питания выше минимального, даже для микросхем, поддерживающих блочное стирание.

Для проверки памяти микросхемы на чистоту нажмите кнопку Blank Check.

Рисунок 2.16. Кнопка стирания

2.12. Автоматическое программирование/считывание

В оболочке имеются две специализированные кнопки для ускорения процедур программирования и считывания прошивок.

Рисунок 2.17. Кнопки автоматизации.

2.12.1. Автоматический импорт прошивки и программирование

Для выполнения этой операции нажмите кнопку Auto Import Hex + Write Device. По нажатию этой кнопки открывается диалоговое окно выбора прошивки, по умолчанию выбирается предыдущая прошивка. После подтверждения прошивки она импортируется в память и прошивается в память микросхемы. В процессе дальнейшей работы производится мониторинг загруженной прошивки (см. п.2.7.2).

При использовании этой функции остальные возможности программирования отключаются.

2.12.2. Автоматическое считывание прошивки и экспорт в .hex файл

По нажатию кнопки Read Device + Export Hex File производится считывание прошивки из памяти микросхемы и открытие диалогового окна сохранения файла.

2.13. Калибровка PICKit 2

Напряжение, выдаваемое программатором на целевую плату, может зависеть от конкретного экземпляра PICKit 2 и реализации порта USB в персональном компьютере. В оболочке имеется возможность калибровки этого напряжения.

Для каждого конкретного PICKit 2 можно задать собственный идентификатор (имя программатора).

2.13.1. Калибровка питающего напряжения

Калибровка позволяет увеличить точность выдаваемого напряжения и точность контроля внешнего напряжения питания. Калибровочное значение хранится в энергонезависимой памяти программатора и используется также при работе с MPLAB IDE.

Для калибровки необходим мультиметр или другой прибор для измерения напряжения. Необходимо отключить программатор от целевой платы, выбрать пункт меню Tools→Calibrate Vdd & Set Unit ID… и следовать указаниям мастера калибровки.

Замечание
Напряжение, выдаваемое программатором на плату, ограничено напряжением, получаемым с шины USB минус падение на диоде. Для ноутбуков это напряжение может быть 4,2 В и ниже.

2.13.2. Задание имени программатора

В процессе калибровки возможно задать уникальный идентификатор (имя) программатора. Это имя будет отображаться в строке статуса оболочки программатора (рис. 2.19) и в окне Output среды программирования MPLAB IDE.

Рисунок 2.18. Задание имени программатора.

Глава 3. Использование внутрисхемного программирования (ICSP™)

3.1. Введение

Отладчик и программатор разработчика PICkit 2 может программировать установленные в плату микроконтроллеры. Внутрисхемное программирование (In-Circuit Serial Programming – ICSP) требует пять проводов:

В любом случае схема должна проектироваться так, чтобы требуемые сигналы проходили к микроконтроллеру без искажения формы. Рис. 3.1 показывает типовую схему подключения микроконтроллера при внутрисхемном программировании. Для успешного внутрисхемного программирования необходимо соблюдать меры предосторожности, которые описаны в следующих пунктах.

Замечание
Для каждого конкретного программируемого устройства пожалуйста ознакомьтесь со спецификацией на программирование, которую можно найти на сайте Microchip www.microchip.com

Рисунок 3.1. Типовая схема внутрисхемного программирования.

3.2. Изолирование вывода VPP/MCLR/PORT

Необходимо учесть, что напряжение программирования VPP имеет типовое значение +12В. Это может предоставить некоторые проблемы в следующих случаях:

Если вывод VPP используется как вывод MCLR

Типовая рекомендованная схема включения имеет подтягивающий резистор и конденсатор. Необходимо принять меры, чтобы скорость нарастания напряжения VPP не уменьшилась и превышает скорость нарастания указанную в спецификации на программирование (обычно 1 мкс).

Если в схеме используется супервизор питания или кнопка, подключенная к выводу MCLR, то в этом случае рекомендуется чтобы они были изолированы от напряжения программирования VPP с помощью диода Шоттки или ограничительный резистор как показано на рис. 3.1. Для получения дополнительной информации об использовании супервизоров питания в схемах с внутрисхемным программированием, обратитесь к инструкции по применению AN820 “System Supervisors in ICSP™ Architectures“ (DS00820).

Если вывод VPP используется как выход порта

Если к разрабатываемой схеме нельзя подключать выводы с напряжением программирования VPP 12В, то в этом случае рекомендуется использование диода Шоттки или ограничительного резистора как показано на рис. 3-1 для защиты схемы.

3.3. Изолирование выводов ICSPCLK (PGC) и ICSPDAT (PGD)

Выводы ICSPCLK (PGC) и ICSPDAT (PGD) необходимо изолировать от схемы для предотвращения искажения сигналов программирования внешней схемой. Сигнал ICSPCLK (PGC) однонаправленный тактовый сигнал от программатора к программируемому устройству. Сигнал ICSPDAT (PGD) – двунаправленный сигнал данных. Если конструкция позволяет, то выделите эти выводы только для внутрисхемного программирования. Однако если требуется, чтобы эти выводы использовались в схеме, проектируйте схему так, чтобы не изменялись уровни и фронты сигналов. Изолирующая схема сильно зависит от приложения. Рис. 3.1 показывает один из возможных вариантов с применением последовательных резисторов для изоляции сигналов программирования от схемы.

3.4 Напряжение питания VDD

Во время внутрисхемного программирования необходимо чтобы программируемое устройство было запитано в соответствии со спецификацией. Обычно напряжение питания программируемого устройства соединено с напряжением питания всей схемы. Схема может получать питание от программатора PICkit 2 или иметь собственный источник питания. Необходимо соблюсти меры предосторожности, которые описаны в следующих пунктах.

3.4.1. Схема запитана от PICkit 2

С помощью PICkit 2 можно выставлять напряжение между максимальным и минимальным значениями, которые позволяет спецификация программирования на конкретное устройство, за исключением, если минимальное напряжение не ниже 2.5В. Убедитесь что выставлено нужное напряжение для схемы до того как начнете программировать устройство или включите напряжение питания VDD.

Внимание!
Ток USB порта ограничивается значением 100мА. Если схема и программатор суммарно требуют больший ток, то USB порт может выключиться. Используйте внешнее питание если требуется больший ток.
Замечание
Потребление схемы должно быть ограничено уровнем 25мА, когда программатор используется для питания внешней схемы. Убедитесь в том, что ваша схема не замедлят рост напряжения питания VDD на время не более чем 500 мкс.

3.4.2. Схема запитана от внешнего источника питания

PICkit 2 может использоваться с устройством, которое имеет собственный источник питания с напряжением в диапазоне от 2,5 до 5,0В.

3.4.3 Использование режима общего (Bulk) стирания

Некоторые микросхемы используют режим общего (Bulk) стирания памяти программ, памяти данных EEPROM, слов конфигурации и идентификации. Обычно функция общего стирания памяти требует напряжения питания микроконтроллера (VDD) в диапазоне от 4.5 до 5,5В (уточните в спецификации на программирование для конкретной микросхемы).

Такой диапазон напряжений может создать некоторые сложности, если конечное изделие разработано для работы в другом диапазоне напряжений питания. Для того чтобы использовать режим общего стирания памяти необходимо чтобы в схеме были предусмотрены требования к режиму общего стирания памяти и защищены все чувствительные цепи.

Если прибор имеет напряжение питания VDD ниже чем требуется для режима общего стирания, то пользователь увидит сообщающее от программы до осуществления процедуры стирания памяти.

3.5 VSS

«Земля» схемы должна быть подключена к «земле» программатора PICkit 2 (VSS).

3.6 Длина кабеля

Минимизируйте длину проводников линий внутрисхемного программирования от PICkit 2 до программируемого устройства. Минимизация длины проводников необходима для сохранения величины и формы сигналов. Форма и величина сигналов будет влиять на успешное программирование устройств.

3.7 Программирование последовательной памяти EEPROM и KeeLOQ HCS кодеров/кодеков

Назначение выводов и сигналов PICkit 2 для программирования микросхем памяти и KeeLOQ отличается от описанных в пункте «3.1 Введение» и рисунке 3.1. Для получения подробной информации по подключению конкретной микросхемы обратитесь к файлу «PICkit 2 Programmer Readme» (меню Help→Readme).

Обратите внимание, что микросхемы памяти и KeeLOQ могут не программироваться внутрисхемно. Попытки внутрисхемного программирования последовательной памяти EEPROM могут натолкнуться на ошибки программирования из-за конфликтов с другими устройствами, подключенными к последовательной шине данных.

Глава 4. PICkit 2 Debug Express

4.1. Введение

Помимо непосредственно операции программирования программатор/отладчик PICKit 2 в комплексе с бесплатной средой разработки MPLAB IDE (www.microchip.com/mplab), поддерживает внутрисхемную отладку некоторых PIC-микроконтроллеров. Программное обеспечение PICkit 2 Debug Express совместно со средой MPLAD IDE позволяет осуществлять пошаговое и непрерывное выполнение программы с точками останова непосредственно PIC контроллера в составе Вашего конечного устройства.

После останова процессора, содержимое регистров доступно для чтения и модификации. За более подробной информацией об использовании среды MPLAB IDE обратитесь к следующей документации:

4.2. Отладочный комплект PICkit 2 Debug Express

Отладочный комплект PICkit 2 Debug Express содержит:

* помимо платы, которая входит в комплект PICkit 2 Debug Express, можно совместно с комплектом изучать и работать со следующими платами:

Замечание
Обратите внимание, что на Explorer 16 неправильно помечены выводы для подключения PICkit2 (pin 1 на Explorer 16 соответствует выводу pin 6).

4.3 Подключение PICkit 2

Процедура подключения PICkit 2 описана в пункте 2.2 «Подключение PICkit 2»

Замечание
Debug Express дополнительно требует подтягивающие к земле резисторы по 4,7КОм на линиях ICSPCLK и ICSPDAT. Последние версии программаторов/отладчиков PICKit 2 имеют Красную кнопку и уже встроенные подтягивающие резисторы. На старых программаторах PICkit 2 эта кнопка черного цвета, и необходимо подключение соответствующих подтягивающих резисторов на плате.

Установите последнюю версию MPLAB IDE с прилагаемого в комплекте CD-диска или скачайте бесплатно с сайта Microchip.

Замечание
Debug Express требует версии MPLAB IDE не ниже 7.50

4.4. Использование PICkit 2 Debug Express

4.4.1 Список поддерживаемых контроллеров

Полный список устройств, поддерживаемых PICkit 2 Debug Express, можно посмотреть в файле «Readme for PICkit 2.htm» в разделе «Readmes» директории «MPLAB IDE installation». При выборе устройства (см. пункт 4.5. «Инструкции по применению Debug Express»), в окне «Select Device»(рис. 4-11) в разделе «Debuggers» цветом указана степень поддержки того или иного устройства:

Тестовая поддержка означает, что устройство поддерживается, но пока не прошло сертификационных тестов Microchip.

4.4.2 Зарезервированная область памяти

PICkit 2 Debug Express использует некоторые из ресурсов микроконтроллера во время отладки. Также он задействует память программ и ОЗУ во время отладки. Эти области памяти недоступны для пользователя. В MPLAB IDE зарезервированные область памяти регистров отмечаются литерой «R». Более подробная информация об областях памяти, необходимых для внутрисхемной отладки, можно посмотреть в разделе MPLAB IDE: Help→Topics. Информация об зарезервированных областях памяти в разделе «Resources Used By MPLAB ICD 2».

4.4.3 Использование отладочного модуля

Все контроллеры базового семейства и некоторые контроллеры среднего семейства требуют специального отладочного ICD модуля для осуществления внутрисхемной отладки. Список соответствующих каждому контроллеру отладочных модулей можно посмотреть в документе «Header Board Specification» (DS51292), на диске PICkit 2, идущем в комплекте, или на сайте www.microchip.com.

На плате отладочного модуля устанавливается специальный отладочный кристалл, аналогичный эмулируемому. На большинстве отладочных модулей расположен разъем RJ-11, используемый при отладке, и требующий дополнительный адаптер AC164110 c ICSP разъема на RJ-11 разъем. На рис. 4.1 показан пример подключения отладочного модуля AC162061 для PIC16F690 к плате DM164120-1 и использование адаптера AC164110.

Рис.4.1. Схема подключения PICkit2.

Большинство контроллеров среднего семейства, семейства PIC18 и 16-разрядных PIC контроллеров не требуют отладочного модуля и могут отлаживаться напрямую внутрисхемно с помощью ICSP выводов. Например, PIC16F887, имеющийся на демонстрационной плате, входящей в комплект, может отлаживаться напрямую, простым подключением PICkit 2 (рис.4.2):

4.4.4 Конфигурационные биты

PIC контроллеры, которые могут отлаживаться напрямую, без использования отладочного модуля, содержат так называемый DEBUG бит в слове (словах) конфигурации, запрещающий или разрешающий отладку. Этот бит устанавливается автоматически MPLAB IDE, при использовании PICkit2 Debug Express, и не должен выставляться программно в исходном коде.

Внимание:
бит /DEBUG НЕЛЬЗЯ устанавливать программно в конфигурационных настройках. Это может привести к тому, что данный бит будет выставлен неверно в момент программирования, что в свою очередь приведет к неправильному функционированию контроллера в Вашем приложении.

Большинство 16-разрядных PIC контроллеров семейства PIC24 и dsPIC33 имеют выводы для внутрисхемного программирования и отладки PGC1/EMUC1 и PGD1/EMUD1, PGC2/EMUC2 и PGD2/EMUD2 и т.д. Для программирования может быть выбран любой из портов ICSP, в то время как для отладки только один порт. Активный EMU порт задается в конфигурационных битах конкретного контроллера. Если EMU порт, к которому подключен PICkit 2, не задан, отладка будет недоступна. В диалоговом окне MPLAB IDE Configuration Bits соответствующий порт выбирается битами «Comm Channel Select».

4.4.5 Точки останова

Число точек останова, поддерживаемых PICKit 2 Debug Express, зависит от контроллера. Большинство контроллеров базового и среднего семейства поддерживают одну точку останова, некоторые контроллеры семейства PIC18 и 16-разрядные контроллеры поддерживают более одной точки. Число точек останова для конкретного контроллера можно посмотреть в MPLAB IDE в разделе Debugger→Breakpoints. В диалоговом окне (рис.4.3) можно посмотреть число выставленных активных точек останова. Окно «Active Breakpoint Limit» показывает максимально возможное число точек останова для конкретного MCU. Окно «Active Breakpoint Limit» показывает сколько точек останова не использовано.

Некоторые PIC18 и 16-разрядные контроллеры также поддерживают расширенные точки останова. Расширенные точки позволяют выставлять точки останова в памяти ОЗУ, и приводят к останову программы, по факту чтения/записи в ОЗУ. Счетчик событий (число событий до останова программы) выставляется в окне «Pass Count». Значение по умолчанию для счетчика событий равно «0», что означает останов программы при первой точке останова. Если контроллер поддерживает расширенные точки останова, в MPLAB IDE будет доступно меню Debugger→Advanced Breakpoints. Если контроллер не поддерживает расширенные точки останова, это меню будет недоступно или отсутствовать. Номер расширенной точки останова задается в меню «Break Point #» (рис.4.4).

Замечание
в диалоговом окне «Advanced Breakpoint» отображаются все расширенные точки останова, выставленные в памяти программ. Однако в данном окне нельзя выставлять/сбрасывать соответствующие точки останова, а только счетчик событий по каждой точке.

Для выставления, редактирования, очистки точек останова используйте меню Debugger→Breakpoints MPLAB IDE.

4.4.6 Проскальзывание

При внутрисхемной отладке PIC микроконтроллеров, выполнение программы будет остановлено на инструкции, следующей непосредственно за точкой останова, а команда, на которой была выставлена точка останова будет выполнена. Это свойство называют «проскальзыванием».

Важно иметь ввиду наличие свойства проскальзывания при выставления точек останова в Вашей программе. Когда точка останова установлена на инструкции GOTO, CALL или RETURN, отладчик остановится на инструкции, на которые указывают соответствующие команды перехода. В случае если в программе имеются две подряд следующие друг за другом инструкции CALL и прерывание установлено на первой, отлачик остановится на инструкции, на которую указывает второй CALL. Во избежание таких ситуаций, хорошим тоном считается размещение команды NOP между командами CALL, расположенными рядом. Важно! В 16-разрядные контроллерах после прерывания будут выполнены 2 следующие инструкции.

4.4.7 Скрипты линкера

Если в Вашем проекте используются скрипты линкера, для внутрисхемной отладки вместо стандартного файла линкера необходимо использовать специальные ICD скрипты линкера, которые резервируют ресурсы, необходимые PICkit2 Debug Express для отладки. Каждый контроллер имеет свой линкер файл, который обозначается с помощью «i» в конце имени файла. Например:

16F877i.lkr – линкер файл внутрисхемной отладки для PIC16F877

18F4520i.lkr – линкер файл внутрисхемной отладки для PIC18F4520

4.5. Руководство пользователя Debug Express

В качестве примера в этом руководстве описывается работа с демонстрационной платой DM164120-2 c контроллером PIC16F887 на борту, идущей в комплекте PICkit 2 Debug Express.

4.5.1 Выбор контроллера

Для выбора контроллера в MPLAB IDE:

4.5.2 Выбор PICkit 2, в качестве средства отладки

4.5.3 Создание нового проекта в MPLAB IDE

Для создания нового проекта в MPLAB IDE используйте Project Wizard.

Убедитесь в правильности указания пути по умолчанию:

Нажмите Next

Укажите путь для вновь создаваемого проекта и назовите его (рис.4.12). В нашем случае: C:\Program Files\Microchip\PICkit 2 v2\DBE, название PIC16F887 Debug Demo.

Добавьте Файл Вашего проекта (рис.4.13).

Замечание
в другие файлы можно будет добавить позже.

Литера «А» означает, что MPLAB IDE может определять, должен ли быть путь абсолютным или косвенным к файлу проекта. Более подробная информация об этом в разделе помощи к MPLAB IDE.

Замечание
для проектов, содержащих более одного файла необходимо добавить еще и файл скрипта линкера.

Если Вы все указали правильно нажмите Finish, иначе можно вернуться к предыдущим шагам по созданию проекта Back (рис.4.14).

4.5.4 Просмотр проекта

После создания проекта в рабочей области MPLAB IDE появится окно проекта PROJECT WINDOW. (рис 4.15). Если оно не открыто, можно открыть его с помощью View→Project.

С помощью этого окна можно добавлять или удалять файлы проекта (правая кнопка мыши).

4.5.5 Создание hex-файла

Чтобы запрограммировать контроллер необходимо скомпилировать проект и получить hex-файл. Для этого выберите в меню Project→Build All или Build All во всплывающем меню при нажатии правой клавишей мыши по иконке проекта. MPASM-ассемблер создаст hex-файл с тем же названием, что и исходный asm-файл. В окне Output на вкладке Build можно просмотреть текущее действие, выполняемое ассемблером.

4.5.6 Проверка значений битов конфигурации

Биты конфигурации запрограммированного контроллера устанавливаются в соответствие с директивами _CONFIG программы. После компиляции проекта их значения можно просмотреть в окне Configure→Configuration Bits.

Для выполнения ознакомительной работы с набором PICkit2 Debug Express следует установить следующие биты конфигурации:

Источник

Рекомендуем:  Как понять что детское питание не подходит новорожденному ребенку
Adblock
detector