Настройка таймера ардуино

Arduino и прерывания таймера

Привет, Хабр! Представляю вашему вниманию перевод статьи «Timer interrupts» автора E.

Предисловие

Плата Arduino позволяет быстро и минимальными средствами решить самые разные задачи. Но там где нужны произвольные интервалы времени (периодический опрос датчиков, высокоточные ШИМ сигналы, импульсы большой длительности) стандартные библиотечные функции задержки не удобны. На время их действия скетч приостанавливается и управлять им становится невозможно.

В подобной ситуации лучше использовать встроенные AVR таймеры. Как это сделать и не заблудиться в технических дебрях даташитов, рассказывает удачная статья, перевод которой и предлагается вашему вниманию.

В этой статье обсуждаются таймеры AVR и Arduino и то, как их использовать в Arduino проектах и схемах пользователя.

Что такое таймер?

Как и в повседневной жизни в микроконтроллерах таймер это некоторая вещь, которая может подать сигнал в будущем, в тот момент который вы установите. Когда этот момент наступает, вызывается прерывание микроконтроллера, напоминая ему что-нибудь сделать, например выполнить определенный фрагмент кода.

Таймеры, как и внешние прерывания, работают независимо от основной программы. Вместо выполнения циклов или повторяющегося вызова задержки millis() вы можете назначить таймеру делать свою работу, в то время как ваш код делает другие вещи.

Итак, предположим, что имеется устройство, которое должно что-то делать, например мигать светодиодом каждые 5 секунд. Если не использовать таймеры, а писать обычный код, то надо установить переменную в момент зажигания светодиода и постоянно проверять не наступил ли момент ее переключения. С прерыванием по таймеру вам достаточно настроить прерывание, и затем запустить таймер. Светодиод будет мигать точно вовремя, независимо от действий основной программы.

Как работает таймер?

Он действует путем увеличения переменной, называемой счетным регистром. Счетный регистр может считать до определенной величины, зависящей от его размера. Таймер увеличивает свой счетчик раз за разом пока не достигнет максимальной величины, в этой точке счетчик переполнится и сбросится обратно в ноль. Таймер обычно устанавливает бит флага, чтобы дать вам знать, что переполнение произошло.

Вы можете проверять этот флаг вручную или можете сделать таймерный переключатель — вызывать прерывание автоматически в момент установки флага. Подобно всяким другим прерываниям вы можете назначить служебную подпрограмму прерывания (Interrupt Service Routine или ISR), чтобы выполнить заданный код, когда таймер переполнится. ISR сама сбросит флаг переполнения, поэтому использование прерываний обычно лучший выбор из-за простоты и скорости.

Чтобы увеличивать значения счетчика через точные интервалы времени, таймер надо подключить к тактовому источнику. Тактовый источник генерирует постоянно повторяющийся сигнал. Каждый раз, когда таймер обнаруживает этот сигнал, он увеличивает значение счетчика на единицу. Поскольку таймер работает от тактового источника, наименьшей измеряемой единицей времени является период такта. Если вы подключите тактовый сигнал частотой 1 МГц, то разрешение таймера (или период таймера) будет:

T = 1 / f (f это тактовая частота)
T = 1 / 1 МГц = 1 / 10^6 Гц
T = (1 ∗ 10^-6) с

Таким образом разрешение таймера одна миллионная доля секунды. Хотя вы можете применить для таймеров внешний тактовый источник, в большинстве случаев используется внутренний источник самого чипа.

Типы таймеров

В стандартных платах Arduino на 8 битном AVR чипе имеется сразу несколько таймеров. У чипов Atmega168 и Atmega328 есть три таймера Timer0, Timer1 и Timer2. Они также имеют сторожевой таймер, который можно использовать для защиты от сбоев или как механизм программного сброса. Вот некоторые особенности каждого таймера.

Timer0:
Timer0 является 8 битным таймером, это означает, что его счетный регистр может хранить числа вплоть до 255 (т. е. байт без знака). Timer0 используется стандартными временными функциями Arduino такими как delay() и millis(), так что лучше не запутывать его если вас заботят последствия.

Timer1:
Timer1 это 16 битный таймер с максимальным значением счета 65535 (целое без знака). Этот таймер использует библиотека Arduino Servo, учитывайте это если применяете его в своих проектах.

Timer2:
Timer2 — 8 битный и очень похож на Timer0. Он используется в Arduino функции tone().

Timer3, Timer4, Timer5:
Чипы ATmega1280 и ATmega2560 (установлены в вариантах Arduino Mega) имеют три добавочных таймера. Все они 16 битные и работают аналогично Timer1.

Конфигурация регистров

Для того чтобы использовать эти таймеры в AVR есть регистры настроек. Таймеры содержат множество таких регистров. Два из них — регистры управления таймера/счетчика содержат установочные переменные и называются TCCRxA и TCCRxB, где x — номер таймера (TCCR1A и TCCR1B, и т. п.). Каждый регистр содержит 8 бит и каждый бит хранит конфигурационную переменную. Вот сведения из даташита Atmega328:

TCCR1A
Бит 7 6 5 4 3 2 1 0
0x80 COM1A1 COM1A0 COM1B1 COM1B0 WGM11 WGM10
ReadWrite RW RW RW RW R R RW RW
Начальное значение 0 0 0 0 0 0 0 0
TCCR1B
Бит 7 6 5 4 3 2 1 0
0x81 ICNC1 ICES1 WGM13 WGM12 CS12 CS11 CS10
ReadWrite RW RW R RW RW RW RW RW
Начальное значение 0 0 0 0 0 0 0 0

Наиболее важными являются три последние бита в TCCR1B: CS12, CS11 и CS10. Они определяют тактовую частоту таймера. Выбирая их в разных комбинациях вы можете приказать таймеру действовать на различных скоростях. Вот таблица из даташита, описывающая действие битов выбора:

CS12 CS11 CS10 Действие
0 0 0 Нет тактового источника (Timer/Counter остановлен)
0 0 1 clk_io/1 (нет деления)
0 1 0 clk_io/8 (делитель частоты)
0 1 1 clk_io/64 (делитель частоты)
1 0 0 clk_io/256 (делитель частоты)
1 0 1 clk_io/1024 (делитель частоты)
1 1 0 Внешний тактовый источник на выводе T1. Тактирование по спаду
1 1 1 Внешний тактовый источник на выводе T1. Тактирование по фронту

По умолчанию все эти биты установлены на ноль.

Допустим вы хотите, чтобы Timer1 работал на тактовой частоте с одним отсчетом на период. Когда он переполнится, вы хотите вызвать подпрограмму прерывания, которая переключает светодиод, подсоединенный к ножке 13, в состояние включено или выключено. Для этого примера запишем Arduino код, но будем использовать процедуры и функции библиотеки avr-libc всегда, когда это не делает вещи слишком сложными. Сторонники чистого AVR могут адаптировать код по своему усмотрению.

Сначала инициализируем таймер:

Регистр TIMSK1 это регистр маски прерываний Таймера/Счетчика1. Он контролирует прерывания, которые таймер может вызвать. Установка бита TOIE1 приказывает таймеру вызвать прерывание когда таймер переполняется. Подробнее об этом позже.

Когда вы устанавливаете бит CS10, таймер начинает считать и, как только возникает прерывание по переполнению, вызывается ISR(TIMER1_OVF_vect). Это происходит всегда когда таймер переполняется.

Дальше определим функцию прерывания ISR:

Сейчас мы можем определить цикл loop() и переключать светодиод независимо от того, что происходит в главной программе. Чтобы выключить таймер, установите TCCR1B=0 в любое время.

Как часто будет мигать светодиод?

Timer1 установлен на прерывание по переполнению и давайте предположим, что вы используете Atmega328 с тактовой частотой 16 МГц. Поскольку таймер 16-битный, он может считать до максимального значения (2^16 – 1), или 65535. При 16 МГц цикл выполняется 1/(16 ∗ 10^6) секунды или 6.25e-8 с. Это означает что 65535 отсчетов произойдут за (65535 ∗ 6.25e-8 с) и ISR будет вызываться примерно через 0,0041 с. И так раз за разом, каждую четырехтысячную секунды. Это слишком быстро, чтобы увидеть мерцание.

Если мы подадим на светодиод очень быстрый ШИМ сигнал с 50% заполнением, то свечение будет казаться непрерывным, но менее ярким чем обычно. Подобный эксперимент показывает удивительную мощь микроконтроллеров — даже недорогой 8-битный чип может обрабатывать информацию намного быстрей чем мы способны обнаружить.

Делитель таймера и режим CTC

Чтобы управлять периодом, вы можете использовать делитель, который позволяет поделить тактовый сигнал на различные степени двойки и увеличить период таймера. Например, вы бы хотели мигания светодиода с интервалом одна секунда. В регистре TCCR1B есть три бита CS устанавливающие наиболее подходящее разрешение. Если установить биты CS10 и CS12 используя:

то частота тактового источника поделится на 1024. Это дает разрешение таймера 1/(16 ∗ 10^6 / 1024) или 6.4e-5 с. Теперь таймер будет переполняться каждые (65535 ∗ 6.4e-5с) или за 4,194с. Это слишком долго.

Но есть и другой режим AVR таймера. Он называется сброс таймера по совпадению или CTC. Вместо счета до переполнения, таймер сравнивает свой счетчик с переменой которая ранее сохранена в регистре. Когда счет совпадет с этой переменной, таймер может либо установить флаг, либо вызвать прерывание, точно так же как и в случае переполнения.

Чтобы использовать режим CTC надо понять, сколько циклов вам нужно, чтобы получить интервал в одну секунду. Предположим, что коэффициент деления по-прежнему равен 1024.

Расчет будет следующий:

Вы должны добавить дополнительную единицу к числу отсчетов потому что в CTC режиме при совпадении счетчика с заданным значением он сбросит сам себя в ноль. Сброс занимает один тактовый период, который надо учесть в расчетах. Во многих случаях ошибка в один период не слишком значима, но в высокоточных задачах она может быть критичной.

Функция настройки setup() будет такая:

Также нужно заменить прерывание по переполнению на прерывание по совпадению:

Сейчас светодиод будет зажигаться и гаснуть ровно на одну секунду. А вы можете делать все что угодно в цикле loop(). Пока вы не измените настройки таймера, программа никак не связана с прерываниями. У вас нет ограничений на использование таймера с разными режимами и настройками делителя.

Вот полный стартовый пример который вы можете использовать как основу для собственных проектов:

Помните, что вы можете использовать встроенные ISR функции для расширения функций таймера. Например вам требуется опрашивать датчик каждые 10 секунд. Но установок таймера, обеспечивающих такой долгий счет без переполнения нет. Однако можно использовать ISR чтобы инкрементировать счетную переменную раз в секунду и затем опрашивать датчик когда переменная достигнет 10. С использованием СТС режима из предыдущего примера прерывание могло бы выглядеть так:

Поскольку переменная будет модифицироваться внутри ISR она должна быть декларирована как volatile. Поэтому, при описании переменных в начале программы вам надо написать:

Послесловие переводчика

В свое время эта статья сэкономила мне немало времени при разработке прототипа измерительного генератора. Надеюсь, что она окажется полезной и другим читателям.

Источник

Многозадачная Ардуина: таймеры без боли

Не каждый ардуинщик знает о том, что помимо стартового кода в setup и бесконечного цикла в loop, в прошивку робота можно добавлять такие кусочки кода, которые будут останавливать ход основного цикла в строго определенное заранее запланированное время, выполнять свои дела, затем аккуратно передавать управление в основную программу так, что она вообще ничего не заметит. Такая возможность обеспечена механизмом прерываний по таймеру (обычное дело для любого микроконтроллера), с её помощью в прошивку можно вносить элементы реального времени и многозадачности.

Еще меньше используют такую возможность на практике, т.к. в стандартном не слишком богатом API Arduino она не предусмотрена. И, хотя, доступ ко всем богатствам внутренних возможностей микроконтроллера лежит на расстоянии вытянутой руки через подключение одного-двух системных заголовочных файлов, не каждый пожелает добавить в свой аккуратный маленький скетч пару-тройку экранов довольно специфического настроечного кода (попутно потеряв с ним остатки переносимости между разными платами). Совсем единицы (тем более, среди аудитории Ардуино) решатся и смогут в нем разобраться.

Сегодня я избавлю вас от страданий.

и расскажу, как получить настоящие многозадачность и реальное время в прошивке вашего ардуино-робота, добавив в неё ровно 3 строчки кода (включая #include в шапке). Обещаю, что у вас всё получится, даже если вы только что в первый раз запустили Blink.

Начнем сразу с кода

Подключаем библиотеку timer-api.h (раз)

Запускаем таймер с нужной частотой с timer_init_ISR_XYHz: здесь XYHz=1Hz — 1 Герц — один вызов прерывания в секунду (два)

(ISR — interrupt service routine, процедура-обработчик прерывания)

Добавляем в главный цикл loop любую блокирующую или неблокирующую ерунду: печатаем сообщение, ждём 5 секунд (здесь всё, как обычно, поэтому не считаем)

Процедура, вызываемая прерыванием по событию таймера с заданным периодом, — реализация для функции с именем timer_handle_interrupts: печатаем сообщение, мигаем лампочкой (три)

То же самое, только добавим замер времени между двумя вызовами для наглядности и отладки:

Шьем плату, открываем Инструменты > Монитор порта, наблюдаем результат:

Как видим, обработчик timer_handle_interrupts печатает сообщение каждые 1000000 (1 миллион) микросекунд, т.е. ровно раз в секунду. И (о чудо!) постоянная блокирующая задержка на 5 секунд delay(5000) в главном цикле никаким образом ему в этом действии не мешает.

Вот вам реальное время и многозадачность в одном скетче в 3 строчки, я обещал.

Варианты частот для timer_init_ISR_XYHz

(вызов timer_init_ISR_1MHz тоже есть, но он не даёт рабочий результат ни на одном из тестовых контроллеров)

Код прерывания, очевидно, должен выполняться достаточно быстро для того, чтобы успеть завершиться до следующего вызова прерывания и, желательно, еще оставить немного процессорного времени для выполнения главного цикла.

Полагаю, излишне пояснять, что чем выше частота таймера, тем меньше период вызова прерываний, тем быстрее должен выполняться код обработчика. Я бы не рекомендовал помещать в него вызовы блокирующих задержек delay, циклы с неизвестным заранее количеством итераций, любые другие вызовы с плохо предсказуемым временем выполнения (в том числе Serial.print).

Суммирование периодов (деление частоты)

В том случае, если стандартные частоты из предложенных на выбор вас не устраивают, можно ввести в код прерывания дополнительный счетчик, который будет выполнять полезный код только после определенного количества пропущенных вызовов. Целевой период будет равен сумме пропускаемых базовых периодов. Или можно сделать его вообще переменным.

Произвольная частота

Есть еще вариант установить практически произвольное (в определенных границах) значение частоты таймера при помощи вызова timer_init_ISR(timer, prescaler, adjustment) с параметрами — системным делителем тактовой частоты процессора prescaler и произвольным значением adjustment для размещения в регистре счетчика таймера.

Не вдаваясь в подробности, чтобы не перегружать пост, приведу ссылку на пример с подробными комментариями:
arduino-timer-api/examples/timer-api-custom-clock/timer-api-custom-clock.ino

И только отмечу, что использование такого подхода может привести к потере переносимости кода между контроллерами с разной тактовой частотой, т.к. параметры для получения целевой частоты таймера подбираются в прямой зависимости от частоты системного генератора сигнала на чипе, разрядности таймера, доступных вариантов системных делителей prescaler.

Запуск и остановка таймера в динамике

Для остановки таймера следует использовать вызов timer_stop_ISR, для повторного запуска — любой вариант timer_init_ISR_XYHz, как и раньше.

Установка библиотеки

Клонировать репозиторий прямо в каталог с библиотеками

и перезапустить среду Arduino.

Или на странице проекта arduino-timer-api скачать снапшот репозитория Clone or download > Download ZIP или один из релизов в виде архива, затем установить архив arduino-timer-api-master.zip через меню установки библиотек в среде Arduino (Скетч > Подключить библиотеку > Добавить .ZIP библиотеку. ).

Примеры должны появиться в меню File > Examples > arduino-timer-api

Поддерживаемые чипы и платформы

— Atmega/AVR 16 бит 16МГц на Arduino
— SAM/ARM 32 бит 84МГц на Arduino Due
— PIC32MX/MIPS 32 бит 80МГц на семействе ChipKIT (PIC32MZ/MIPS 200МГц — частично, в работе)

Ну и, напоследок,

Вращение шаговым мотором через интерфейс step-dir:
— в фоне по таймеру генерируем постоянный прямоугольный сигнал для шага по фронту HIGH->LOW на ножке STEP
— в главном цикле принимаем от пользователя команды для выбора направления вращения (ножка DIR) или остановки мотора (ножка EN) через последовательный порт

Источник

Adblock
detector