L293dd подключение к ардуино

Содержание

Обзор motor shield l293d

Автор: Сергей · Опубликовано 22.05.2020 · Обновлено 04.08.2020

Если задумались спроектировать робота, первым делом необходимо научится управлять различными двигателями, это может быть и двигатель постоянного тока или сервопривод. Один из самых простых и недорогих способов это воспользоваться Motor Shield на базе L293D, который можно легко установить на плату Arduino UNO.

Технические параметры

► Напряжение питания двигателей: 5 — 36 В
► Напряжение питания платы: 5 В
► Допустимый ток нагрузки: 600 мА на канал
► Максимальный (пиковый) ток нагрузки: 1,2 А на канал
► Размер платы: 70х54х20 мм

Общие сведения о L293D

Motor shield построен на микросхеме L293D, состоящая из двух H-мост (H-Bridge), с помощью которых можно управлять двумя постоянными двигателями или одним шаговым двигателем. Каждый канал рассчитан на 0.6 А с пиком 1.2 А. Так как на shield установлено две микросхемы L293D, можно управлять сразу четырьмя двигателями постоянного тока, это позволяет использовать данный shield в разработке робот платформ. Так же, на shield установлена микросхема 74HC595, которая расширяет 4 цифровых контакта Arduino до 8 управляющих контактов двух микросхем L293D.

Питание Motor shield L293D:
Общий источник питания для Arduino и двигателей (максимальное напряжение 12 В) — можно использовать один источник питания, используется разъем DC на Arduino UNO или 2-х контактный разъем на shield «EXT_PWR«, так же необходимо установить перемычку «PWR«.
Раздельный источник питания — рекомендуется отдельно питать Arduino и shield, для этого Arduino подключаем к USB, а двигатели подключаем к источнику постоянного тока, используя разъем » EXT_PWR». Необходимо убрать перемычку перемычку «PWR«.

Внимание! Нельзя подавать питание на «EXT_PWR» выше 12 В при установленной перемычке «PWR».

Выходные контакты двух микросхем L293D выведены по бокам shield с помощью 5-ти контактных винтовых клемм, а именно М1 , М2 , М3 и М4. К этим контактам подключается четыре двигателя постоянного тока и два шаговых двигателя.

Так же, на shield выведен два 3-х контактных разъема, которым можно подключить два сервопривода.

Неиспользуемые контакты:
Цифровые контакты D2 и D13 и аналоговые контакты A0-A5 не используются.

Подключение к Arduino двигателя постоянного тока с помощью L293D

Необходимые детали:
Arduino UNO R3 x 1 шт.
Блок питания 12В, 2А x 1 шт.
Кабель USB 2.0 A-B x 1 шт.
Двигатель постоянного тока x 21шт.
Motor shield L293D

Подключение:
Устанавливаем shield сверху Arduino, далее подключаем источник питания к клеммам «EXT_PWR«, в примере используется источник питания на 9 В. Теперь подключаем двигатели к клеммам M1, M2, M3 или M4. В примере подключаем к М4.

Установка библиотеки:
Для удобной работы с Motor shield L293D необходимо установить библиотеку «AFMotor.h». Заходим в Arduino IDE, открываем вкладку «Скетч» -> «Подключить библиотеку» и нажимает «Управлять библиотеками…«

Откроется новое окно «Менеджер библиотек«, в окне поиска вводим «Adafruit Motor Shield» и устанавливаем библиотеку.

Программа:
В данном скетче показано, как управлять скоростью и направлением движении двигателями постоянного тока.

Источник

#33. Motor shield l293d подключение. Пример кода для Arduino

Робототехника с каждым годом становиться все популярнее. И поэтому количество электроники с помощью которой можно реализовать роботизированную модель достаточно много. А если у вас нет опыта работы с электроникой, вам отлично подойдёт Motor shield на базе драйвера l293d. Шилд устанавливается на плату Arduino UNO.

На shield выведены контакты для подключения двигателей постоянного тока, шаговых двигателей и сервоприводов. Я уже делал проект с использованием данного Motor shield. У вас, наверное, возник вопрос. Если шилд такой простой, почему у меня мало Arduino проектов с его использование? Это связанно со сложностью расширения функционала проекта при использовании Motor shield l293d. Но обо всём по порядку.

Технические параметры Motor shield l293d.

  • Напряжение питания двигателей: 5 — 36 В
  • Напряжение питания платы: 5 В
  • Допустимый ток нагрузки: 600 мА на канал
  • Максимальный (пиковый) ток нагрузки: 1,2 А на канал
  • Размер платы: 70х54х20 мм

Общие сведения о Motor shield L293D.

Motor shield построен на драйвере L293D, состоящим из двух H-мост (H-Bridge), с помощью которых можно управлять двумя постоянными двигателями или одним шаговым двигателем. Каждый канал рассчитан на 0.6 А с пиком 1.2 А. Так как на Motor shield установлено две микросхемы L293D, можно управлять сразу четырьмя двигателями постоянного тока, это позволяет использовать данный shield в разработке робот платформ. Так же, на shield установлен сдвиговый регистр 74HC595, который расширяет 4 цифровых контакта Arduino до 8 управляющих контактов двух микросхем L293D. Познакомиться подробнее со сдвиговым регистром 74HC595 можно в уроке: Урок 2 — Подключаем сдвиговый регистр 74НС595 к Arduino. «Бегущие» огни.

Питание Motor shield L293D:

  • Общий источник питания для Arduino и двигателей (максимальное напряжение 12 В) — можно использовать один источник питания, используется разъем DC на Arduino UNO или 2-х контактный разъем на Motor shield «EXT_PWR», так же необходимо установить перемычку «PWR».
  • Раздельный источник питания — рекомендуется отдельно питать Arduino и shield, для этого Arduino подключаем к USB, а двигатели подключаем к источнику постоянного тока, используя разъем «EXT_PWR». Необходимо убрать перемычку «PWR».

Внимание! Нельзя подавать питание на «EXT_PWR» выше 12 В, при установленной перемычке «PWR».

Выходные контакты двух микросхем L293D выведены по бокам shield с помощью 5-ти контактных винтовых клемм, а именно М1 , М2 , М3 и М4. К этим контактам подключается четыре двигателя постоянного тока и два шаговых двигателя.

Так же, на shield выведено два 3-х контактных разъема, к которым можно подключить два сервопривода.

Контакты, которые не используются Motor shield L293D:

Так как шилд устанавливается на Arduino UNO, есть контакты, которые не используются Motor shield и к ним можно подключить дополнительные компоненты. Это цифровые контакты D2 и D13 и аналоговые контакты A0-A5. Кроме этого на шилде можно распаять пины A0-A5 и подключаться к ним прямо на shield.

Подключение к Motor shield L293D двигателя постоянного тока.

Для этого нам понадобятся следующие комплектующие:

Схема подключения двигателя постоянного тока к Motor shield.

Устанавливаем shield сверху Arduino, далее подключаем источник питания к клеммам «EXT_PWR», в примере используется источник питания на 12 В. Теперь подключаем двигатели к клеммам M1, M2, M3 или M4. В примере подключаем 2 двигателя постоянного тока к М4, М3.

Установка библиотеки «AFMotor.h»

Для удобной работы с Motor shield L293D, необходимо установить библиотеку «AFMotor.h». Заходим в Arduino IDE, открываем вкладку «Скетч -> Подключить библиотеку -> Управлять библиотеками…»

Откроется новое окно «Менеджер библиотек», в окне поиска вводим «Adafruit Motor Shield» и устанавливаем библиотеку.

Скетч управления двигателем постоянного тока с помощью Motor shield L293D.

Скетч начинается с подключения библиотеки «AFMotor.h», затем создаем объект «AF_DCMotor motor4(4)» в котором указываем номер порта двигателя (M1, M2, M3, M4). Для подключения второго двигателя «AF_DCMotor motor3(3)» и так далее.

В блоке «setup» мы вызываем функции «setSpeed(speed)» в которой задаем скорость двигателя, от 0 до 255 и функцию «motor.run» направление вращения двигателя, где «FORWARD» — вперед, «BACKWARD» — назад, «RELEASE» — остановка.

Подключение сервопривода к Motor shield L293D.

Для этого нам понадобятся следующие комплектующие:

С помощью shield L293D можно управлять сервоприводами. На shield выведены 16-разрядные контакты Arduino 9 и 10, питание для сервоприводов подается от 5 вольтового стабилизатора Arduino, поэтому подключать дополнительное питание в разъем «EXT_PWR» не нужно.

Схема подключения сервопривода SG90S к Motor shield.

Скетч управления сервопривода SG90S.

Так как используется стандартный вывод PWM, нет смысла использовать дополнительную библиотеку, воспользуемся стандартной библиотекой Servo.

Подключение к Motor shield L293D шагового двигателя NEMO17.

Для этого нам понадобятся следующие комплектующие:

В данном примере подключим шаговый двигатель NEMA 17, который рассчитан на 12 В (и выше) и делает 200 шагов на оборот. Итак, подключите шаговый двигатель к клеммам M3 и M4. Затем подключите внешний источник питания 12 В к разъему «EXT_PWR».

Схема подключения шагового двигателя Nemo17 к Motor shield L293D.

Скетч управления шаговым двигателем Nemo17 с помощью Motor shield L293D.

Используем ту же библиотеку, что и в первом примере.

Описание кода:

Скетч начинается с подключением библиотеки «AFMotor.h». Во второй строке создаем объект «AF_Stepper motor(48, 2)» где указываем количество шагов на оборот и номер порта.

В разделе настройки, функцией «motor.setSpeed(10);» устанавливает скорость двигателя, где «10» количество оборотов в минуту.

В разделе цикла программы, мы просто вызываем две функции для управления скоростью и направлением вращения двигателя.

  • «100» — это сколько шагов, необходимо сделать.
  • «FORWARD»и «BACKWARD»— направление вращение двигателем.
  • «SINGLE» — активация одной обмотки двигателя для совершения шага.
  • «DOUBLE» — активация двух обмоток двигателя, что обеспечивает больший вращающий момент
  • «INTERLEAVE» — применение ШИМ для управления шаговым двигателем двигателем.

Вывод по использованию Motor shield L293D.

Для начинающего Ардуинщика Motor shield L293D позволит реализовать роботизированную модель. Но реализовать более серьёзные проекты не получится. Так как свободных pin для подключения остается не много. Что еще мне не нравится в данном shield это то, что пины для shield заняты всегда, даже если мы подключили 2 двигателя постоянного тока. А другая пара подключения свободна, пины Arduino все равно будут заняты, и мы не сможем их использовать. Это наглядный пример того, что использования данного шилда не является универсальным и гибким решением.

Появились вопросы или предложения, не стесняйся, пиши в комментарии!

Не забывайте подписываться на канал Youtube и вступайте в группы в Вконтакте и Facebook.

Всем Пока-Пока.

И до встречи в следующем уроке.

Понравилась статья? Поделитесь ею с друзьями:

Источник

Подключение Motor Shield L293D к плате Arduino и управление электромоторами

Доброго времени суток, читатели нашего сайта. Сегодня мы с вами познакомимся с очень интересным и полезным устройством, которое называется Motor Shield L293D. С помощью этого чуда вы сможете управлять электродвигателями, сервоприводами, а в перспективе сделать свой крутой проект. На мой взгляд, это один из самых нужных шилдов, которые существуют на сегодняшний день. Чтобы практически познакомиться с ним, мы будем использовать электродвигатель, а если точнее, будем управлять скоростью и направлением его движения. Ну что ж, перейдем, непосредственно, от слов к делу.

Чем эта статья может быть вам полезна

Целью статьи является научиться практически, связывая Motor Shield L293D и Arduino, научиться управлять электромоторами. В этой статье вы познакомитесь с базовыми знаниями, которые будут необходимы для создания более серьезного проекта. Также мы узнаем из каких элементов состоит Motor Shield L293D и его технические характеристики.

Технические характеристики Motor Shield L293D

Motor Shield L293D имеет следующие характеристики :

  • Максимальный продолжительный ток в каждом канале: 0,6 А;
  • Допустимый ток нагрузки 600мА на канал, пиковый ток — 1.2A
  • Питание моторов от 4.5 В до 36 В
  • 4-х канальное управление
  • Присутствует защита от перегрева
  • Присутствует контакт для дополнительного питания платы

Разберемся же, из чего состоит этот motor shield. На фотографии ниже вы можете найти цифры, на которые мы будем опираться.

1 . Под цифрой «1» на плате находятся микросхемы, обеспечивающие работу шилда. Две крайние микросхемы называются L293D, они позволяют управлять слаботочными двигателями с током потребления до 600 мА на канал. По центру же находится микросхема, которая уменьшает количество управляющих выводов.

2 . Под вторым номером находятся выводы, отвечающие за подключение сервоприводов. На плате обозначены контакты питания, так что подключить сервопривод не составит труда.

3 . Под цифрой 3 обозначены клемма, к которым нужно подключать электродвигатели. Имеются 4 клемма под названиями: M1, M2, M3, M4. Следовательно, подключить к плате возможно только 4 электромотора.

4 . Здесь размещены клемма, через которые вы можете запитать ваш шилд, ведь для работы моторов необходимо большее напряжение, чем напряжение от Arduino. Хотелось бы отметить важный момент, чтобы запитывать Motor Shield L293D иным источником необходимо снять перемычку, которая находится под цифрой 5

5 . Под цифрой пять находится перемычка, отвечающая за питание шилда.

Также на motor shield L293D находится светодиод, который горит только тогда, когда подсоединенные электромоторы запитанны и могут выполнять свое предназначение. А если светодиод не проявляет признаков жизни, то ваши электромоторы работать не будут, так как источника питания не хватает на работу моторов или его совсем нет.

После того, как мы познакомились с технической информацией устройства, перейдем к практической части.

Необходимые компоненты для подключения

Для подключения нам необходимы следующие компоненты:

Все эти элементы можно приобрести по низкой цене и с высоким качеством в интернет магазине SmartElements.

Для большего удобства вы можете кликнуть мышкой по названию в списке выше, чтобы перейти к покупке товара.

После того, как вы подготовили все необходимые компоненты, можно перейти к подключению. Сначала рассмотрим схему подключения нашего мини-проекта.

Схема подключения Motor Shield L293D и Arduino

Присоединение шилда к Arduino воспроизводится стандартным способом, а именно прямым подключением, сделав «бутерброд». Как это сделать, вы можете увидеть на фотографии ниже.

После подключения Motor Shield L293D к Arduino, нам необходимо присоединить оставшиеся компоненты. Правильное подключение показано на фотографии ниже.

Скорее всего, подключение не вызвало у вас проблем, так как оно очень даже простое. Пришло время перейти к более важной процедуре — к программированию.

Готовый программный код для управления Motor Shield L293D

Для работы датчика на Arduino нужно скачать и установить библиотеку AFMotor .

Скачать библиотеку можно здесь .

После того, как мы скачали нужную библиотеку, ее нужно правильно установить. Скачанные файлы нужно переместить по следующему пути :

Диск C Progtam Files Arduino Libraries

После того, как мы все сделали перейдем к самой важной ступеньке, а именно к программированию.

Мы рассмотрим два программных кода с подключением одного и нескольких электродвигателей к L293D . Рассмотрим два случая для того, чтобы вы увидели тонкости и особенности этого программного кода..

Для начала рассмотрим подключение одного мотора к Motor Shield L293D и Arduino.

Перейдем ко второму коду, для управления уже несколькими электромоторами.

Разбор програмного скетча для управления электромоторами с помощью Motor Shield L293D и Arduino

Схему соединений мы собрали. Скетч вставили и загрузили. У нас все получилось, но мне кажется, что мы что-то забыли. Мы забыли разобраться в том, как же работает наша установка! Рассматривать мы будем участки кода, которые могут вызвать у вас непонимание. Перейдем к изучению написанного кода.

В участке кода, представленном ниже, мы задаем максимальную скорость, для электромоторов. Мы указали максимальное значение скорости равное «255».

В данном участке кода мы командой «motor1. run (FORWARD);» задаем движение электродвигателям вперед, а командой «motor1. setSpeed (255);» указываем, с какой скоростью будут они работать. Если вы захотите установить максимальную скорость, то ее значение должно быть таким, которое указано в строчке «motor1. setSpeed (255);» (в нашем случае значение максимальной скорости равно 255).

Вы можете заметить строчки, в которых указана функция » delay «(Пример такого кода указан ниже). Эта функция отвечает за продолжительность действия того или иного действия. В нашем случае » delay » указывает, какое количество времени двигатель будет бездействовать.

Надеюсь у вас все получилось! Если у вас остались вопросы, можете написать нам в вконтакте или в комментариях ниже. Мы постараемся ответить на ваши вопросы в скором времени!

Источник

Adblock
detector