Код для ардуино на питоне

Использование языка программирования Python вместе с Arduino

В настоящее время Arduino является одной из самых мощных и простых в использовании платформ с открытым исходным кодом. Однако тенденции современного мира таковы, что часто электронными платформами необходимо управлять с помощью высокоуровневого общецелевого языка программирования чтобы сделать их более эффективными и дружественными. Одним из таких языков является Python, который представляет собой интерпретируемый, объектно-ориентированный, высокоуровневый язык программирования с динамической семантикой и высокоуровневыми встроенными структурами данных, что делает его весьма привлекательным для быстрой разработки приложений.

Объединение возможностей Arduino и Python открывает двери для множества новых возможностей, поскольку Python имеет повышенную производительность и умеет взаимодействовать с другими платформами, такими как openCV, Matlab и т. д.

В этой статье мы изучим как установить Python на компьютер и как его использовать вместе с Arduino для включения/выключения встроенного в плату Arduino светодиода.

Установка Python на ваш компьютер

В данном разделе статьи будет рассмотрена установка языка программирования на компьютер с 32 или 64-битной windows. Установка Python на компьютеры под управлением MAC и Linux будет отличаться.
Для установки Python выполните следующую последовательность шагов:

1. Установите 32-битную версию Python 2.7.9 IDLE на ваш компьютер. Не скачивайте 64-битную версию Python или его более свежую версию поскольку они могут быть не совместимы с используемыми нами библиотеками Arduino. Даже если ваш компьютер работает на 64-битной операционной системе, то вы все равно можете использовать на нем 32-битную версию Python.

Примечание : оригинал данной статьи был написан в 2017 году, поэтому, возможно, сейчас Arduino IDE уже поддерживает совместимость с более свежими версиями Python (этот вопрос будет уточняться в дальнейшем).

2. Запустите на выполнение скачанный установочный файл и установите эту версию языка Python на ваш компьютер. Не изменяйте каталог для установки Python, оставьте его по умолчанию — C:\Python27.

3. Возможно, во время установки Python на него будет “ругаться” антивирус – не обращайте на это внимание.

После установки Python вы можете проверить действительно ли он установлен на ваш компьютер введя в строке поиска Windows строку “Python IDLE”.

После его запуска вы должны увидеть на экране компьютера “Python shell” (оболочка Python) как показано на следующем рисунке.

Вы можете непосредственно писать программу в этой оболочке или же создать новый файл и писать и проверять программу в нем. Теперь давайте удостоверимся в том, что Python работает. Для этого напечатайте “print (1+1)” и нажмите enter. Вы должны после этого увидеть в оболочке напечатанный результат вычислений – 2.

Установка PySerial в Python

Следующим шагом необходимо установить программу PySerial, которая представляет собой Python API module (модуль прикладного программного интерфейса Python’а), с помощью которого можно считывать и записывать данные в последовательном виде в плату Arduino или любой другой микроконтроллер.

Кликните на Pyserial Windows чтобы скачать PySerial. По приведенной ссылке вы можете скачать установочный файл этого приложения и установить его. Не изменяйте настройки (в том числе и каталог для установки) во время установки приложения – оставьте их по умолчанию.

Теперь давайте убедимся в том, что PySerial корректно установлена и работает. Для этого снова откройте Python Shell и напечатайте в нем “import serial”. Если библиотека успешно установлена, то после этого вы не увидите никаких сообщений об ошибке как показано на следующем рисунке.

Дальнейший материал статьи предполагает что вы хотя бы немного знакомы с платформой Arduino и умеете загружать в нее программы. Если это не так, то советуем ознакомиться с руководством по Arduino для начинающих.

Наша первая совместная программа на Arduino и Python

Как отмечалось ранее, в этой программе мы будем управлять встроенным в плату Arduino светодиодом.

Программа для Arduino

Полный текст программы для платы Arduino приведен в конце статьи, здесь же обсудим наиболее важные его фрагменты.

Внутри функции setup мы инициализируем последовательную связь со скоростью 9600 бод/с и зададим режим работы для контакта, с которого будем управлять светодиодом. Также мы передадим приветственное сообщение в Python при помощи последовательной связи.

Источник

Python & Arduino. Просто, быстро и красиво

Оборудование


Недавно я заполучил очень интересную плату: Arduino SS Micro. Эта плата, внешне напоминающая Digispark Attiny 85, тем не менее является китайской версией Arduino Micro, с выведенным выходом USB.

Подробно рассказывать о ней я не буду, ведь это уже сделал пользователь YouTube с ником iomoio, и его обзор можно посмотреть здесь.

Как мне кажется — это довольно крутое и удобное устройство для небольших домашних проектов, ведь у проводов есть супер-свойство: теряться в самый неподходящий момент.

В качестве управляющего компьютера был использован MacBook Pro с операционной системой macOS Mojave, но не надо закрывать статью, если вы используете Windows или Linux — всё описанное в статье будет работать без изменений на любой операционной системе.

Скетч для Arduino

В качестве примера будет использоваться скетч, включающий и выключающий светодиод, по команде из Serial-порта.

Светодиод в Arduino SS Micro висит на порте SS, и поэтому он автоматически выключается. Не смотря на это, стандартный пример Blink — мигающий светодиод работает.

Если вы будете использовать другую Arduino — не забудьте сменить пин светодиода.

Код для компьютера

Одним из достоинств Python, кроме его кроссплатформенности — наличие гигантского числа библиотек. Нам понадобятся:

  • PySerial — библиотека для работы с Serial-портом
  • PyQT5 — библиотека для создания графического интерфейса

Установка

Для установки, воспользуемся встроенным менеджером пакетов — pip.

Для удобства создания GUI можно установить программу QTDesigner.

Интерфейс

Поскольку данная программа предназначена скорее, для демонстрации возможностей, пользователь может выбрать порт из предложенных, а так же скорость, с которой будет происходить общение.

Исходный код

Вся работа с устройством происходит благодаря библиотеке PySerial. Но есть несколько нюансов. Например, как узнать, в какой из портов подключено устройство?

На всем прекрасно известном сайте stackoverflow, пользователь с ником Thomas предложил уже готовое решение, которое я и использовал.

Кроме этого необходимо хранить список доступных скоростей:

А теперь соберём вместе дизайн(созданный в QtDesigner и сконвертированный с помощью утилиты pyuic5 в .py файл), функции для сканирования портов и основной код программы.

Основной класс, содержащий в себе всю логику программы

Переменные self.Port и self.Speed — это выпадающие списки, содержащие в себе значения доступных портов и скоростей.

При нажатии на кнопку self.ConnectButton вызывается функция connect, в которой производится попытка подключения к заданному порту с заданной скоростью. Если подключение успешно, то кнопка окрашивается в зелёный цвет, и меняется надпись.

Функция send отправляет в наш порт байтовую строку — заставляющую включить режим мигания.

Таким образом можно управлять различными устройствами, подключёнными к USB.

Данная статья является вводной и обзорной, более полную информацию можно найти например тут:

Источник

Прототипирование в среде Python-Arduino

Привет, Хабр! Хочу на примерах рассказать о самом простом способе создания чего то сложного. Суть страшного слова «прототипирование» сводится к использованию аналогий или шаблонов в проекте Arduino.

Не хочу пугать длинными словами начинающих пользователей Python-Arduino, по-этому идем сразу по примерам.

Зуммер — генерирует звуковой сигнал тревоги

Зумер [1]. выдает звук, когда снабжен цифровым значением HIGH (то есть, +5 В), которое может быть обеспечено с помощью цифровых выводов Arduino [2].

Однако, вместо того, чтобы выполнять простой цифровой вывод, как было выполнено с датчиком движения реализуем трюки программирования Python для генерации различных звуковых паттернов и создания различных звуковых эффектов.

Соединения

Код Python

Чтобы выполнить эти действия, мы собираемся реализовать специальную функцию Python, которая будет принимать номер пина, время повторения и номер образца в качестве входных данных.

Прежде чем перейти к объяснению кода, необходимо открыть файл программы, buzzerPattern.py, из папки кода. В начале кода можно найти функцию Python buzzerPattern (), которая будет вызываться из основной программы с соответствующими параметрами. Эта функция является ядром всей программы.

Функция содержит два массива массивов с жестким кодом, pattern1 и pattern2. Каждый из них содержит время включения и выключения зуммера в течение секунды, которое является рабочим циклом шаблона.

Например, в pattern1 0,8 представляет время, в течение которого зуммер должен быть включен, а 0,2 представляет противоположное.

Функция будет повторять этот шаблон зуммера для периодов повторения, заданных аргументом функции. После запуска цикла for со значением повторения функция проверяет номер шаблона из аргумента функции и выполняет шаблон.

Как только весь цикл повторения завершен, снова полностью отключим зуммер, если он включен, и безопасно отключим плату с помощью метода exit ():

Остальная часть программы относительно проста, поскольку содержит код для им-порта библиотек и инициализации платы Arduino. Как только плата инициализируется, выполним функцию buzzerPattern () с входным аргументом (2, 10, 1). Этот аргумент попросит функцию воспроизвести pattern1 10 раз на контакте номер 2:

Двигатель постоянного тока — управление скоростью двигателя с использованием двигателей PWM

DC [3] широко используется в робототехнических приложениях. Они доступны в широком диапазоне характеристик напряжения, в зависимости от применения.

В этом примере используем электродвигатель постоянного тока 5 В, потому что мы хотим подавать питание с помощью самой платы Arduino. Поскольку цифровой вывод Arduino может иметь только два состояния, то есть HIGH (+ 5V) или LOW (0V), невозможно управлять скоростью двигателя, используя только режим OUTPUT.

В качестве решения мы собираемся реализовать режим PWM с помощью цифровых выводов, которые способны поддерживать PWM. При использовании pyFirmata выводы, сконфигурированные в режиме PWM, принимают любые значения ввода с плавающей точкой от 0 до 1.0, которые представляют 0 и 5 В. соответственно.

Соединения

Чтобы не повредить плату Arduino из-за большой случайной потери тока, мы будем использовать транзистор в качестве переключателя, который использует только небольшое количество тока для управления большим током в двигателе постоянного тока.

Для завершения соединения цепи, как показано на следующей схеме, понадобятся NPN-транзистор (TIP120, N2222 или аналогичный), один диод (1N4001 или аналогичный) и резистор на 220 Ом с DC-двигателем.

Подключите базу транзистора к цифровому выводу 3, который также поддерживает режим PWM. Соедините остальные компоненты, как показано на схеме:

Код Python

Пользовательская функция, dcMotorControl (), принимает скорость и длительность двигателя в качестве входных параметров, как описано в следующем фрагменте кода:

Используем аналогичный код для импорта необходимой библиотеки и инициализации платы Arduino.

После инициализации мы назначаем режим цифрового вывода 3 как PWM, что видно из использования метода get_pin (‘d: 3: p’). Этот код отражает косвенный режим назначения пинрежима, о котором мы узнали в предыдущем разделе:

В процессе сбора ручных данных от пользователя мы запускаем комбинацию опера-тора try / except (чтобы освободить плату при выходе) и инструкцию while (чтобы получить непрерывные данные от пользователя).

Шаблон кода вводит метод input () для получения пользовательских значений (скорости двигателя и продолжительности запуска двигателя) из интерактивного терминала Python. Как только эти значения получены от пользователя, программа вызывает функцию dcMotorControl () для выполнения моторного действия: try:

LED — контролируя яркость светодиода с использованием PWM

В предыдущем шаблоне мы контролировали скорость двигателя постоянного тока с помощью PWM. Аналогичным образом можно управлять яркостью светодиода. Вместо того, чтобы просить пользователя вводить яркость, мы будем использовать модуль Python случайным образом в этом шаблоне.

Будем использовать этот модуль для генерации случайного числа от 1 до 100, которое позже будет использовано для записи этого значения на выводе и случайного изменения яркости светодиода.

Эта функция randint () — действительно полезная функция, предоставляемая случайным модулем, и она широко используется при тестировании прототипов путем быстрой отправки случайных сигналов.

Соединения

Понадобится подтягивающий резистор для подключения светодиода к контакту Arduino. Необходимо подключить анод светодиода (более длинный нож) к цифровому вы-воду 11 через один резистор с сопротивлением 220 Ом и соединить катод (более короткая нога) с землей:

Важно отметить, что цифровой контакт 11 на Arduino Uno также способен выполнять PWM вместе с цифровыми булавками 3, 5, 6, 9 и 10.

Код Python

Используем код Python с названием ledBrightnessPWM.py Значение float между 0 и 1.0 выбирается случайным образом, прежде чем передавать его на вывод PWM.
Первые несколько строк кода импортируют необходимые библиотеки и инициализируют плату.

В этом примере мы используем прямой метод назначения пин-режима. В следующем фрагменте кода, цифровой пин 11 назначается для режима PWM:

После конца цикла нужно безопасно отключить плату Arduino после выключения светодиода в последний раз.

Выводы

В этой публикации на простых примерах раскрыт самый распространенный подход к программированию датчиков, управляющих устройств к ним. Представлены коды Python которые легко можно использовать в собственных проектах Arduino. Для наглядности примеров использованы различные датчики и шаблоны кода.

Источник

Adblock
detector