Знакомство с Arduino
Введение
Торжественно открываю новый блог на Хабре, посвящённый Arduino! Блог об универсальном opensource-микроконтроллере Arduino, который будет интересен всем любителям микроэлектроники, самодельных гаджетов и всем, кто не боится взять в руки паяльник.
Arduino представляет собой линейку электронных блоков-плат, которые можно подключать к компьютеру по USB, а в качестве периферии — любые устройства от светодиодов до механизмов радиуоправляемых моделей и роботов. Программы для него пишутся на простом и интуитивно понятном си-подобном языке Wiring (c возможностью подключения сторонних библиотек на C/C++, например, для управления LCD-дисплеями или двигателями), компилируются и загружаются в устройство одной кнопкой, после чего вы тут же получаете работающий автономный гаджет. Никакого ассемблера, никаких лишних проводов и дорогущих деталей и программаторов — чистое творчество, включай и работай!
Применение
После короткого рассказа друзьям и знакомым про Arduino («это типа электронного конструктора, микро-ЭВМ, в который можно загрузить любую программу и получить любое другое устройство») самый часто задаваемый вопрос «А зачем это всё?» или «Какая мне от этого выгода?» Скучные люди, не правда ли? Неужели среди ваших знакомых нет ни одного радиолюбителя, а может вы и сами радиолюбитель?
Применение Arduino очень простое — не забавы ради, а развития мозга для. Интересно же линуксоидам ковыряться в коде ядра? Какая от этого польза? Почему бы вам не заняться «железным» (в противовес «софтовому») творчеством? Вот прямо сейчас рядом со мной сидит коллега-дизайнер и разбирается… с нейронными сетями. В общем что говорить, забыт дух технического творчества, забыты радиокружки и авиамодельные клубы. Все только сидят у своих компьютеров и сделать ничего путного в железе, кроме как воткнуть вилку в розетку, не могут :) Соберите свой веб-сервер, цветомузыкальную установку или прикольного робота!
Сообщество любителей Arduino уже знает об успешных примерах: GPS-трекер с записью на SD-карту, простой аудиоплеер, Twitter-дисплей, электронные игры с дисплеем и тачскрином… Попробуйте купить радиодеталей и сделать что-то своё! Есть даже готовый набор для создания четырёхъядерного Arduino-кластера.
Технические характеристики
Arduino Diecimila представляет собой небольшую электронную плату (далее просто плата) ядром которой является микроконтроллер ATmega168. На плате есть: 14 цифровых входов/выходов, 6 из которых могут работать в режиме ШИМ (PWM) (а следовательно управлять аналоговыми устройствами вроде двигателей и передавать двоичные данные), 6 аналоговых входов (исходной информацией служат не логические 0/1, а значение напряжения), тактовый генератор на 16 МГц, разъёмы питания и USB, ICSP-порт (что-то вроде последовательного интерфейса для цифровых устройств), несколько контрольных светодиодов и кнопка сброса.
Этого вполне достаточно, чтобы подключить плату к USB-порту компьютера, установить нужный софт и начать программировать.
Краткая спецификация
- Микроконтроллер: ATmega168
- Рабочее напряжение: 5 В
- Входное напряжение (рекомендуемое): 7-12 В
- Входное напряжение (пределы): 6-20 В
- Цифровые порты ввода/вывода: 14 портов (из них 6 с ШИМ-сигналом)
- Аналоговые порты ввода: 6 портов
- Ток для портов: 40 мА
- Ток для 3.3В источника: 50 мА
- ППЗУ (Flash Memory): 16 KB (из них 2 Кб используются загрузчиком)
- ОЗУ (SRAM): 1 Кб
- ПЗУ (EEPROM): 512 байт
- Тактовая частота: 16 МГц
Питание
Питание платы осуществляется двумя способами: по кабелю USB (при этом никаких других ухищрений делать не нужно, используется в процессе отладки), либо по специальному разъёму вроде того, что у ноутбуков. В радиомагазине можно купить такой разъём и присоединить к нему аккумулятор или 9-тивольтовую батарейку типа «Крона». Источники питания можно менять перемычкой на плате.
Преимущества и недостатки
- Цена. В Москве Arduino Diecimila можно купить меньше чем за 1000 руб. При этом вы покупаете законченное (ну почти) устройство, не требующее дополнительного оборудования, такого, как дорогостоящие программаторы и отладочные стенды, и не требует платного софта.
- Кроссплатформенность. Программное обеспечение Arduino работает на Windows, Macintosh OS X, Linux и других операционных системах, поскольку является открытым и работает на Java. Большинство микроконтроллерных систем ограничиваются Windows.
- Простая среда программирования. Программная оболочка является простой в использовании для новичков, но достаточно гибкой для продвинутых пользователей, чтобы быстро достичь нужного результата. Особенно это удобно в образовательной среде, где студенты могут с лёгкостью разобраться с платформой, а преподаватели — разработать учебный курс и задания.
- Открытый исходный код. Язык может быть расширен с помощью C++ библиотек, более продвинутые специалисты могут создать свой собственный инструментарий для Arduino на основе компилятора AVR C.
- Открытые спецификации и схемы оборудования. Arduino основан на микроконтроллерах Atmel ATMEGA8 и ATMEGA168. Схемы модулей опубликованы под лицензией Creative Commons, поэтому опытные схемотехники могут создать свою собственную версию модуля для своих нужд. Даже сравнительно неопытные пользователи могут сделать макетную версию модуля, чтобы понять, каким образом он работает и сэкономить деньги.
Из недостатков отмечу, пожалуй, довольно убогую программную оболочку, низкую частоту процессора (чего на самом деле достаточно выше крыши и, кроме того, снижает энергопотребление) и малое количество «дисковой» (флэш) памяти для программ. При такой тактовой частоте и объёме памяти вряд ли получится собрать простой mp3-плеер. Однако вряд ли кто будет пытаться сделать на основе Arduino, скажем, управляемую крылатую ракету :) Кроме того, мне не удалось найти вменяемых исходников для сборки avr-gcc. Ну и само собой, придётся знать (или изучить в процессе) основы электроники на уровне «плюс/минус, резистор/конденсатор» — без этого точно никак.
Arduino.ru
Аппаратная часть платформы Arduino
Существует несколько версий платформ Arduino. Последняя версия Leonardo базируется на микроконтроллере ATmega32u4. Uno, как и предыдущая версия Duemilanove построены на микроконтроллере Atmel ATmega328 (техническое описание). Старые версии платформы Diecimila и первая рабочая Duemilanoves были разработаны на основе Atmel ATmega168 (техническое описание), более ранние версии использовали ATmega8 (техническое описание). Arduino Mega2560, в свою очередь, построена на микроконтроллере ATmega2560 (техническое описание).
Примечание: На всю документацию Arduino распространяется лицензия ShareAlike 3.0 Creative Commons Attribution. Обратитесь к странице «Вы хотите собрать Arduino?» (англ) за более подробной информацией по разработке собственной платформы.
Версии платформы Arduino:
Ниже представлены основные версии плат Arduino:
- Due — новая плата на базе ARM микропроцессора 32bit Cortex-M3 ARM SAM3U4E.
- Leonardo — последняя версия платформы Arduno на ATmega32u4 микроконтроллере . Отличается разъемом microUSB, по размерам совпадает с UNO.
- Yun (описание на англ.) — новая плата, с встроенной поддержкой WiFi на базе ATmega32u4 and the Atheros AR9331
- Micro — новое компактное решение на базе ATmega32u4.
- Uno — самая популяраня версия базовой платформы Arduino USB. Uno имеет стандартный порт USB. Arduino Uno во многом схожа с Duemilanove, но имеет новый чип ATMega8U2 для последовательного подключения по USB и новую, более удобную маркировку вход/выходов. Платформа может быть дополнена платами расширения, например, пользовательскими платами с различными функциями.
- Arduino Ethernet — контроллер со встроенной поддержкой работы по сети и с опциональной возможностью питания по сети с помощью модуля POE (Power over Ethernet).
- Duemilanove — является предпоследней версией базовой платформы Arduino USB. Подключение Duemilanove производится стандартным кабелем USB. После подключения она готова к использованию. Платформа может быть дополнена платами расширения, например, пользовательскими платами с различными функциями.
- Diecimila — предыдущая версия базовой платформы Arduino USB.
- Nano — это компактная платформа, используемая как макет. Nano подключается к компьютеру при помощи кабеля USB Mini-B.
- Mega ADK — версия платы Mega 2560 с поддрежкой USB host интерфейса для связи с телефонами на Android и другими устройствами с USB интерфейсом.
- Mega2560 – новая версия платы серии Mega. Построена на базе Atmega2560 и с использованием чипа ATMega8U2 для последовательного соединения по USB порту.
- Mega – предыдущая версия серии Mega на базе Atmega1280.
- Arduino BT платформа с модулем Bluetooth для беспроводной связи и программирования. Совместима с платами расширения Arduino.
- LilyPad– платформа, пурпурного цвета, разработанная для переноски, может зашиваться в ткань.
- Fio – платформа разработана для беспроводных применений. Fio содержит разъем для радио XBee, разъем для батареи LiPo и встроенную схему подзарядки.
- Mini – самая маленькая платформа Arduino. Прекрасно работает как макетная модель, или, в проектах, где пространство является критическим параметром. Платформа подключается к компьютеру при помощи адаптера Mini USB.
- Адаптер Mini USB – плата, конвертирующая подключение USB в линии 5 В, GND, TX и RX для соединения с платформой Arduino Mini или другими микроконтроллерами.
- Pro – платформа, разработанная для опытных пользователей, может являться частью большего проекта. Она дешевле, чем Diecimila и может питаться от аккумуляторной батареи, но в тоже время требует дополнительной сборки и компонентов.
- Pro Mini – как и платформа Pro разработана для опытных пользователей, которым требуется низкая цена, меньшие размеры и дополнительная функциональность.
- Serial – базовая платформа с интерфейсом RS232 для связи и программирования. Плата легко собирается даже начинающими пользователями. (включает схемы и файлы CAD)
- Serial Single Sided – платформа разработана для ручной сборки. Она обладает чуть большим размером, чем Diecimila, но совместима с платами расширения Arduino.
- USB Serial Light Адаптер — адаптер, позволяющий подключать платы Arduino к компьютеру для обмена данными и заливки скетчей. Удобен для программирования таких плат, как Arduino Mini, Arduino Ethernet и других, не имеющих своего разъема USB
Платы расширения
Платы расширения, устанавливаемыми на платформы, являются платы, расширяющие функциональность Arduino для управления различными устройствами, получения данных и т.д.
- Плата расширения WiFiиспользуется для соединения с беспроводными сетями стандарта 802.11 b/g.
- Плата расширения Xbee Shield обеспечивает при помощи модуля Maxstream Xbee Zigbee беспроводную связь нескольким устройствам Arduino в радиусе до 35 метров (в помещении) и до 90 метров (вне помещения).
- Плата расширения Motor Shield обеспечивает управление двигателями постоянного тока и чтение датчиков положения.
- Плата расширения Ethernet Shield обеспечивает подключение к интернету.
Рекомендуемые аппаратные средства других разработчиков
Испытанные и понравившиеся устройства других разработчиков, совместимые с программой Arduino:
Платформа Boarduino от Adafruit Industries. Предназначена для использования с кабелем FTDI USB-to-TTL-Serial или другим адаптером USB-to-serial. Доступна в виде пустой печатной платы или в комплекте.
Другие сопутствующие устройства
Проверьте список сопутствующего оборудования, составленный пользователями на площадке разработок.
Arduino: выбор платы, подключение и первая программа
Arduino — это электронная платформа с открытым исходным кодом, которая позволяет взаимодействовать с окружающим миром. Благодаря ей можно создать всё, что придёт в голову — от простых электронных игрушек и автоматизации быта до электронной начинки боевого робота для состязаний, управляемого силой мысли (без шуток).
Из чего состоит Arduino?
На аппаратном уровне это серия смонтированных плат, мозгом которых являются микроконтроллеры семейства AVR. Подробнее о том, чем микроконтроллер отличается от микропроцессора.
Платы имеют на борту всё необходимое для комфортной работы, но их функциональности часто бывает недостаточно. Чтобы сделать свой проект более интерактивным, можно использовать различные модули и платы расширений, совместимые с платформой Arduino. Сюда входят датчики (температуры, освещения, влаги, газа/дыма, атмосферного давления), устройства ввода (клавиатуры, джойстики, сенсорные панели) и вывода (сегментные индикаторы, LCD/TFT дисплеи, светодиодные матрицы).
На программном уровне платформа Arduino представляет собой бесплатную среду разработки Arduino IDE. Микроконтроллеры надо программировать на языке C++, с некоторыми отличиями и облегчениями, созданными для быстрой адаптации начинающих. Компиляцию программного кода и прошивку микроконтроллера среда разработки берёт на себя.
Существует также s4a.cat — сервис, базирующийся на Scratch, позволяющий более наглядно вести разработку на Arduino. Он подойдёт для обучения детей, а также если вы разово хотите создать простое устройство без изучения языка программирования Arduino и различных документаций. Для остальных же случаев лучше придерживаться традиционного процесса разработки.
Нужно ли уметь паять?
Знания в области электромонтажа приветствуются, но совсем не обязательны. Простые устройства на базе Arduino часто выполняются в виде макета. Для этого используется беспаечная макетная плата (англ. breadboard), на которой происходит коммутация модулей с платой Arduino с помощью перемычек.
Макетная плата на 400 отверстий (имеются шины питания по бокам). Источник
Также существуют наборы, в которые входят сразу плата Arduino (оригинальная или от стороннего производителя), макетная плата, перемычки и различные радиоэлементы, датчики, модули. Например, такой:
Набор для изучения Arduino. Источник
Какие бывают платы
По производителю
Существуют как официальные версии плат Arduino, так и платы от сторонних производителей. Оригинальные платы отличаются высоким качеством продукта, но и цена тоже выше. Они производятся только в Италии и США, о чём свидетельствует надпись на самой плате.
На примере самой популярной платы Arduino UNO:
- Оригинальная плата. Поставляется только в фирменной коробке, имеет логотип компании, на портах платы — маркировка. Цена от производителя 20 €.
Оригинальная плата Arduino UNO. Источник
Плата Arduino UNO от стороннего производителя. Источник
По назначению
У платы UNO достаточно портов для реализации большинства проектов. Однако иногда возможностей UNO может быть недостаточно, а иногда — избыточно. По этой причине как оригинальный, так и сторонние производители выпускают большое количество плат, различающихся характеристиками микроконтроллера, количеством портов и функциональным назначением.
Различные платы Arduino. Источник
Самые популярные из них:
- Arduino Nano — различие с UNO только в конструктивном исполнении. Nano меньше.
- Arduino Mega — плата на базе мощного микроконтроллера. Имеет большое количество портов.
- Arduino Micro — имеет встроенную поддержку USB-соединения, а потому может использоваться как HID-устройство (клавиатура, мышь, MIDI-устройство).
- Arduino Ethernet — имеет возможность подключения к сети через Ethernet-провод. На плате также расположен слот для microSD карточки.
- Arduino Mini — по характеристикам немного уступает UNO. Преимуществом платы является её миниатюрное исполнение.
- Arduino Due — плата на базе 32-разрядного ARM микроконтроллера. Имеет преимущество в производительности по сравнению с остальными.
- Arduino LilyPad — форм-фактор позволяет использовать плату в предметах одежды и текстиля.
- Arduino Yún — «нужно было ставить линукс…». Имеет поддержку дистрибутива Linux, встроенную поддержку Ethernet и Wi-Fi, слот для microSD. Как и Micro, имеет встроенную поддержку USB-соединения.
Установка ПО
После выбора необходимой платы нужно установить бесплатную среду разработки Arduino IDE, которую можно найти на официальном сайте, а также, по необходимости, драйвер CH340.
Недавно открылась облачная платформа Arduino Create, которая покрывает большинство этапов разработки (от идеи до сборки). Вам не нужно ничего устанавливать на свой компьютер, всё необходимое платформа берёт на себя. В первую очередь — онлайн редактор кода.
В Arduino Create имеется доступ к обучающим материалам, проектам. Вы сможете общаться с профессионалами и помогать новичкам.
Среда разработки Arduino IDE
Особенности программирования на платформе Arduino
Термины
Программный код для Arduino принято называть скетчами (англ. sketches). У скетчей есть два основных метода: setup() и loop() . Первый метод автоматически вызывается после включения/сброса микроконтроллера. В нём происходит инициализация портов и различных модулей, систем. Метод loop() вызывается в бесконечном цикле на протяжении всей работы микроконтроллера.
Порты — неотъемлемая часть любого микроконтроллера. Через них происходит взаимодействие микроконтроллера с внешними устройствами. С программной стороны порты называются пинами. Любой пин может работать в режиме входа (для дальнейшего считывания напряжения с него) или в режиме выхода (для дальнейшей установки напряжения на нём).
Любой пин работает с двумя логическими состояниями: LOW и HIGH , что эквивалентно логическому нулю и единице соответственно. У некоторых портов есть встроенный АЦП, что позволяет считывать аналоговый сигнал со входа (например, значение переменного резистора). Также некоторые пины могут работать в режиме ШИМ (англ. PWM), что позволяет устанавливать аналоговое напряжение на выходе. Обычно функциональные возможности пина указываются на маркировке самой платы.
Основные функции
Для базовой работы с платой в библиотеке Arduino есть следующие функции:
- pinMode(PIN, type) — указывает назначение конкретного пина PIN (значение type INPUT — вход, OUTPUT — выход);
- digitalWrite(PIN, state) — устанавливает логическое состояние на выходе PIN ( state LOW — 0, HIGH — 1);
- digitalRead(PIN) — возвращает логическое состояние со входа PIN ( LOW — 0, HIGH — 1);
- analogWrite(PIN, state) — устанавливает аналоговое напряжение на выходе PIN ( state в пределах от 0 до 255);
- analogRead(PIN) — возвращает значение аналогового уровня сигнала со входа PIN (пределы зависят от разрядности встроенного АЦП. Обычно разрядность составляет 10 бит, следовательно, возвращаемое значение лежит в пределах от 0 до 1023);
- delay(ms) — приостанавливает исполнение скетча на заданное количество миллисекунд;
- millis() — возвращает количество миллисекунд после момента запуска микроконтроллера.
В остальном процесс программирования на Arduino такой же, как на стандартном C++.
Пишем первую программу
Вместо всем привычных Hello World’ов в Arduino принято запускать скетч Blink, который можно найти в Файл→Примеры→01.Basics→Blink. Там же можно найти множество других учебных скетчей на разные темы.
Почти на всех платах размещён светодиод, номер пина которого содержится в переменной LED_BUILTIN . Его можно использовать в отладочных целях. В следующем скетче будет рассмотрен пример управления таким светодиодом.
Рассмотрим скетч Blink:
Прошивка
После написания необходимо «залить» скетч на микроконтроллер. Как уже говорилось, платформа Arduino берёт весь процесс прошивки микроконтроллера на себя — вам лишь необходимо подключить плату к компьютеру.
Перед прошивкой микроконтроллера нужно выбрать вашу плату из списка в IDE. Делается это во вкладке Инструменты→Плата. Большинство существующих плат уже там есть, но при необходимости можно добавлять другие через Менеджер Плат.
После этого нужно подключить плату Arduino к любому USB-порту вашего компьютера и выбрать соответствующий порт во вкладке Инструменты→Порт.
Теперь можно приступать к прошивке микроконтроллера. Для этого достаточно нажать кнопку Загрузка, либо зайти на вкладку Скетч→Загрузка. После нажатия начнётся компиляция кода, и в случае отсутствия ошибок компиляции начнётся прошивка микроконтроллера. Если все этапы выполнены правильно, на плате замигает светодиод с периодом и интервалом в 1 сек.
Обмен данными с компьютером
У всех плат Arduino есть возможность обмена информацией с компьютером. Обмен происходит по USB-кабелю — никаких дополнительных «плюшек» не требуется. Нам нужен класс Serial , который содержит все необходимые функции. Перед работой с классом необходимо инициализировать последовательный порт, указав при этом скорость передачи данных (по умолчанию она равна 9600). Для отправки текстовых данных в классе Serial существуют небезызвестные методы print() и println() . Рассмотрим следующий скетч:
В Arduino IDE есть Монитор порта. Запустить его можно через Инструменты→Монитор порта. После его открытия убедитесь, что Монитор работает на той же скорости, которую вы указали при инициализации последовательного порта в скетче. Это можно сделать в нижней панели Монитора. Если всё правильно настроено, то ежесекундно в Мониторе должна появляться новая строка « T for Tproger ». Обмен данными с компьютером можно использовать для отладки вашего устройства.
Информацию на стороне компьютера можно не только получать, но и отправлять. Для этого рассмотрим следующий скетч:
Прошиваем микроконтроллер и возвращаемся в Монитор порта. Вводим в верхнее поле 1 и нажимаем Отправить. После этого на плате должен загореться светодиод. Выключаем светодиод, отправив с Монитора 0 . Если же отправить символ T , в ответ мы должны получить строку « proger ».
Таким способом можно пересылать информацию с компьютера на Arduino и обратно. Подобным образом можно реализовать связь между двумя Arduino.
А как подключать модули?
Для работы с датчиками и модулями их изготовители создают специальные библиотеки. Они служат для простой интеграции модулей в вашу систему. Подключение библиотеки возможно с zip файла или с помощью Менеджера Библиотек.
Однако большое количество датчиков являются бинарными, т. е. считывать информацию с них можно простой функцией digitalRead() .