Внутренние и внешние источники питания для LCD мониторов.
Внутренние и внешние источники питания для LCD мониторов.
В LCD мониторах могут применяться внутренние и внешние источники питания. При ремонте необходимо определить тип блока питания LCD монитора, схемы построения силового преобразователя, определение схемотехнических решений и назначение каких либо иных схем источника питания. На этом этапе также необходимо определить элементную базу и тип применяемых микросхем, транзисторов.
Внутренний источник питания расположен в корпусе монитора и, как правило, представляет собой импульсный преобразователь, передающий переменное напряжение сети в несколько выходных шин питания постоянного тока (рис. 1). Отличительной особенностью LCD дисплеев с внутренним источником является наличие внешнего разъем 220В для подключения силового сетевого кабеля. Основным недостатком такой компоновки монитора является наличие внутри него высоковольтного мощного импульсного преобразователя, который может самым негативным образом влиять на работу самого монитора.
Рис. 1. Схема внутреннего блока питания LCD монитора.
В случае внешнего источника питания в комплекте вместе с монитором поставляется внешний сетевой адаптер, который представляет собой отдельный модуль преобразования переменное напряжение сети в необходимое постоянное напряжение номиналом порядка 12-24В (рис. 2). Схемотехнически он представляет собой точно такой же импульсный преобразователь, как и во внутреннем блоке питания. Подобное решение компоновки позволяет исключить из состава LCD монитора силовой каскад, что, в конечном счете повышает надежность изделия, а также качество отображаемой информации.
Рис. 2. Схема внешнего блока питания LCD монитора.
Для первого и второго варианта построения монитора количество выходных шин питания колеблется от одной до трех. Типовым вариантом является формирование на выходе шин +3.3В, +5В и +12В. Назначение напряжений следующее:
+5В — используется в качестве дежурного напряжения, а также для питания цифровых, аналоговых схем, логики самой LCD панели и т.д.
+3.3В — напряжение питания цифровых микросхем.
+12В — напряжение питания инвертора ламп задней подсветки, а также используется для питания драйверов LCD панели.
В случае применения внешнего блока питания все вышеперечисленные напряжения будут формироваться из одной единственной входной шины 12-24В с помощью DC-DC преобразователей постоянного тока в постоянный ток. Такое преобразование может осуществляться либо с помощью схемы линейного регулятора, либо с помощью импульсного регулятора. Линейные регуляторы применяются в слаботочных цепях, а импульсные преобразователи в тех каналах, где величина тока может достигать значительных величин. DC-DC преобразователь практически всегда расположен на основной управляющей плате монитора и является его составной частью.
Построение и реализация таких преобразователей достаточно типична и отличается в различных мониторах только количеством выходных шин на выходе и элементной базой. Преобразователи выполнены на основе импульсных понижающих преобразователей напряжений, в составе которых имеется многоканальная микросхема ШИМ, управляющая выходным силовым каскадом. Регулировка и стабилизация выходных шин выполняется с применением технологии ШИМ по цепям обратной связи.
Ремонт блока питания LCD монитора должен всегда производиться только после проведения предварительной диагностики, как отдельных элементов, так и всего источника питания в целом. Такая диагностика необходима с целью оценки возможных повреждений, определения неисправных элементов, исключения повторных отказов и возникновения помех при включении источника питания после проведения ремонтных работ.
Изучаем блок питания и инвертор ламп подсветки ЖК-монитора.
Изучаем блок питания и инвертор ламп подсветки ЖК-монитора.
Наиболее ремонтопригодным и поэтому интересным в плане изучения, является блок питания ЖК-монитора. Назначение его элементов и схемотехника более конкретны и легче в понимании. По статистике ремонта неисправности блоков питания, особенно импульсных, занимают лидирующие позиции среди всех остальных. Практические знания по принципам построения и работы блоков питания, его элементной базы и схемотехники будут особенно полезны и востребованы в практике ремонта подавляющего большинства электронных устройств и различной радиоаппаратуры.
Блок питания ЖК-монитора состоит из двух функциональных частей (по сути это два преобразователя):
— AC/DC адаптер или по-другому сетевой импульсный блок питания;
— DC/AC инвертор, обеспечивающий питание люминесцентных ламп подсветки.
AC/DC адаптер служит для преобразования переменного напряжения сети (220 В) в постоянное напряжение небольшой величины (обычно на выходе импульсного блока питания формируются напряжения от 3,3 до 12 В). Инвертор DC/AC преобразует полученное постоянное напряжение (DC) в переменное (AC) величиной около 600 — 700 В и частотой около 50 кГц, которое подаётся на электроды люминесцентных ламп, встроенных в ЖК-панель.
AC/DC адаптер. Большинство импульсных блоков питания строится на базе специализированных микросхем контроллеров, например, в блоке питания ЖК монитора Acer AL1716 (рис. 1) применена микросхема TOP244Y (в документации на микросхему TOP244Y можно найти типовые примеры принципиальных схем блоков питания, что можно использовать при ремонте блоков питания ЖК мониторов, так как схемы во многом соответствуют типовым, которые указаны в описании микросхемы). На рис. 1 и рис. 2 рассмотрены два примера принципиальных схем импульсных блоков питания на базе микросхем серии TOP242 — 249.
Рис. 1.
В схеме на рис. 2 применены сдвоенные диоды с барьером Шоттки (MBR 20100). Аналогичные диодные сборки (SRF5-04) применены в блоке питания (рис. 3) монитора Acer AL1716 (приведённые принципиальные схемы являются примерами, а реальные схемы импульсных блоков питания могут несколько отличаться).
Микросхема TOP245Y (рис. 3) представляет собой законченный функциональный прибор, в корпусе которого имеется ШИМ-контроллер и мощный полевой транзистор, который переключается с частотой от десятков до сотен килогерц и формирует импульсы в первичной обмотке трансформатора (отсюда пошло и название блок питания — импульсный).
Процесс работы такого импульсного блока питания сводится к следующему:
1) Выпрямление переменного сетевого напряжения 220В.
Выпрямление сетевого напряжения 220В выполняет диодный мост и фильтрующий конденсатор. После выпрямления на конденсаторе формируется напряжение немного больше чем сетевое. На рис. 3 показан диодный мост, а рядом фильтрующий электролитический конденсатор (емкостью 82 мкФ 450 В).
2) Преобразование напряжения и его понижение с помощью трансформатора.
Коммутацию постоянного напряжения 220-240 В с частотой в несколько десятков — сотен килогерц в обмотку высокочастотного импульсного трансформатора выполняет микросхема TOP245Y (рис. 3). Импульсный трансформатор выполняет ту же роль, что и обычный трансформатор, но работает он на более высоких частотах, во много раз больше, чем 50 Гц (поэтому для изготовления его обмоток требуется меньшее число витков, а, следовательно, и меди). В импульсном трансформаторе необходим сердечник из феррита, а не из трансформаторной стали как у трансформаторов на 50 Гц. В результате трансформатор получается очень компактным. Кроме того, импульсные блоки питания очень экономичны и у них высокий КПД.
3) Выпрямление пониженного трансформатором переменного напряжения. Для выпрямления пониженного переменного напряжения используют мощные выпрямительные диоды, в нашем примере (см. рис. 3) использованы диодные сборки с маркировкой SRF5-04. Для выпрямления токов высокой частоты используют диоды Шоттки и обычные силовые диоды с p-n переходом (обычные низкочастотные диоды для выпрямления токов высокой частоты менее предпочтительны, но часто используются для выпрямления повышенных напряжений (20 — 50 В), что нужно иметь ввиду при замене дефектных диодов.
У диодов Шоттки тоже есть некоторые особенности, которые необходимо учитывать. Эти диоды имеют малую ёмкость перехода и способны быстро переключаться (переходить из открытого состояния в закрытое). Это положительное свойство и используется для работы на высоких частотах. Диоды Шоттки имеют малое падения напряжения около 0,2-0,4 В (против 0,6 — 0,7 В у обычных диодов). Это свойство повышает их КПД. Но есть у диодов Шоттки и негативные свойства, которые ограничивают их более широкое использование в электронной технике — они очень чувствительны к превышению обратного напряжения (при превышении обратного напряжения диод Шоттки необратимо выходит из строя). Обычный же диод переходит в режим обратимого пробоя и может восстановиться после превышения допустимого значения обратного напряжения. Именно это обстоятельство и является ахиллесовой пятой, которое служит причиной выгорания диодов Шоттки в выпрямительных цепях всевозможных импульсных блоков питания. Об этом надо помнить и учитывать при проведении работ по диагностики и ремонте.
Для устранения опасных для диодов Шоттки всплесков напряжения, образующихся в обмотках трансформатора на фронтах импульсов, применяются так называемые демпфирующие цепи (на схеме рис. 1 она обозначена как R15- C14). На печатной плате блока питания ЖК монитора Acer AL1716 (рис. 4) также имеются демпфирующие цепи, состоящие из SMD резистора номиналом 10 Ом (R802, R806) и конденсатора (C802, C811), которые защищают диоды Шоттки (D803, D805).
Как правило, диоды Шоттки используются в низковольтных цепях с обратным напряжением, не выше 10 — 18 В, а если требуется получение напряжения в несколько десятков вольт (от 20 до 50В), то применяются диоды на основе p-n перехода. Диоды Шоттки чувствительны к перегреву, в связи с этим их, как правило, для отвода тепла устанавливают на алюминиевый радиатор (отличить диод на основе p-n перехода от диода Шоттки можно по условному графическому обозначению на схеме (рис. 5).
Рис. 5. Условное обозначение диода: а) с барьером Шоттки; б) на основе p-n перехода.
После выпрямительных диодов всегда ставятся электролитические конденсаторы, обеспечивающие сглаживание пульсаций постоянных выходных напряжений (12 В; 5 В; 3,3 В), которые запитывают все блоки LCD-монитора.
Инвертор DC/AC. По своему назначению инвертор схож с электронными пуско-регулирующими аппаратами, применяемыми в осветительной технике для питания бытовых осветительных люминесцентных ламп, но у инверторов ЖК мониторов есть существенные отличия. Инвертор ЖК-монитора, как правило, построен на специализированной микросхеме, которая значительно расширяет набор функций и повышает надёжность схемы (например, инвертор ламп подсветки ЖК-монитора Acer AL1716 построен на базе ШИМ контроллера OZ9910G, который запаян на печатной плате планарным монтажом (см. рис. 6).
Инвертор преобразует постоянное напряжение (значение которого обычно составляет 12 В — это зависит от варианта схемотехники инвертора) в переменное 600-700 В частотой 50 кГц. Контроллер инвертора может управлять яркостью люминесцентных ламп. Сигналы изменения яркости ламп поступают от контроллера ЖКИ (специализированный микропроцессор — мониторный скалер). К микросхеме-контроллеру подключены полевые транзисторы или их сборки.
На рис. 5 показана плата инвертора, на которой к контроллеру OZ9910G подключены две сборки комплементарных полевых транзисторов AP4501SD (сборка полевых транзисторов AP4501SD и её цоколёвка показаны на рис.8, назначение выводов мощной комплементарной пары МДП-транзисторов AO4600 в корпусе SOIC-8 см. в табл. 1).
Таблица 1. Назначение выводов мощной комплементарной пары
МДП-транзисторов AO4600 в корпусе SOIC-8
На плате установлено два высокочастотных трансформатора, служащих для повышения переменного напряжения и подачи его на электроды люминесцентных ламп. Кроме основных элементов, на плате установлены всевозможные радиоэлементы, служащие для защиты от короткого замыкания и неисправности ламп.
Как отремонтировать монитор
В этой статье мы рассмотрим как можно своими силами отремонтировать монитор.
Модули монитора
Современный ЖК-монитор состоит всего из двух плат: скалера и блока питания
Скалер — это плата управления работой монитора. Его мозг. Здесь монитор преобразует цифровой сигнал в цвета на дисплее, а также содержит в себе различные настройки. На ней содержатся процессор, flash-память, куда записывается прошивка монитора, и EEPROM-память, в которой сохраняются текущие настройки.
Блок питания. Он обеспечивает питанием цепи монитора. Может в себе также содержать инвертор для мониторов с LCD подсветкой. В мониторах с LED подсветкой инвертора нет. (Статья про LED)
Блок питания для монитора выглядит примерно вот так:
Есть также и существенное различие. В блоках питания для мониторов с LCD подсветкой можно увидеть высоковольтную часть. Он же инвертор. О его присутствии говорят надписи типа «High Voltage» и клеммы, для подключения ламп. Имейте ввиду, что напряжение, подаваемое на лампы, составляет более 1000 Вольт! Лучше не трогать и тем более не лизать эту часть при включении монитора в сеть.
Вздутые конденсаторы
Это, конечно же, электролитические конденсаторы в фильтре блока питания.
Это одна из самых распространенных поломок ЖК-мониторов. Перепаиваются конденсаторы легко и просто. Иногда на платах стоит не стандартный номинал конденсаторов, например 680 или 820 мкФ х 25 вольт. Если вы столкнулись со вздувшимися конденсаторами такого номинала и их не оказалось в вашем радиомагазине, не спешите обходить все радиомагазины вашего города в поисках точно такого же номинала. Это как раз тот случай, когда “много не вредно”. Это вам скажет любой электронщик. Смело ставьте 1000 мкф х 25 вольт и все будет нормально работать. Можно даже больше.
В связи с тем, что блок питания при работе излучает тепло, которое вредно сказывается на сроке службы конденсаторов, ставьте обязательно конденсаторы с обозначением «105С» на корпусе. Также после перепаивания конденсаторов не помешает проверить предохранитель вторичных цепей, в роли которого часто выступает простой SMD резистор с нулевым сопротивлением, типоразмером 0805, находящийся с обратной стороны платы со стороны трассировки.
Выход из строя стабилитрона
И еще один нюанс, на выходе блока питания, перед самим разъемом питания идущим на скалер, часто ставят SMD стабилитрон
В случае, если напряжение на нем превышает номинальное, он уходит в короткое замыкание и тем самым отключает через цепи защиты наш монитор. Заменить его можно на любой, подходящий по номиналу напряжения. Можно даже использовать с выводами
После того, как все сделали и отремонтировали, проверяем мультиметром напряжения на разъеме питания, который идет на скалер. Там все напряжения подписаны. Убеждаемся, что они совпадают с показаниями мультиметра.
Проблемы в высоковольтной части блока питания (инверторе)
Если есть возможность, то в первую очередь, всегда отыскивайте схемы ремонтируемого устройства. Давайте рассмотрим высоковольтную часть одного из мониторов
Если вы видите, что предохранитель блока питания монитора сгорел, это означает, что сопротивление между проводами питания шнура монитора (входное сопротивление), на какой-то момент стало очень низким (короткое замыкание). Где-то около 50 Ом и меньше, что в свою очередь, по закону Ома, вызвало повышения тока в цепи. От большой силы тока у нас и сгорел проводок предохранителя.
Если предохранитель в металлическо-стеклянном корпусе, мы можем вставить абсолютно любой предохранитель в крепление и прозвонить мультиметром в режиме Омметра 200 Ом сопротивление между штырьками вилки. Если у нас сопротивление равно нулю и до 50 Ом, то ищем пробитый радиоэлемент, который звонится на ноль или на землю.
Шаги будут такие:
Вставляем предохранитель, переключаем мультиметр на 200 Ом и подключаем его к вилке шнура питания. Убеждаемся, что сопротивление очень маленькое. Далее не торопимся вынимать предохранитель.
Итак давайте по схеме посмотрим, какие радиодетали у нас могут коротнуть. На фото выделены цветными рамками те детали, которые необходимо будет проверить при коротком замыкании в высоковольтной части
Все эти процедуры для измерения сопротивления, делаются для того, чтобы вызвонить перечисленные детали по одной. То есть выпаиваем и снова замеряем через вилку сопротивление. Как только мы получим на входе вилки высокое сопротивление, заменив или убрав дефектный радиоэлемент, то можно смело включать вилку в розетку и копать уже дальше.
Нет подсветки монитора
Чем же отличаются мониторы с LCD подсветкой от мониторов с LED подсветкой? В LCD мониторах для подсветки у нас используются лампы CCFL. На русский язык эта аббревиатура звучит как «люминесцентная лампа с холодным катодом» .
Такие лампы располагаются сверху и снизу дисплея и подсвечивают изображение.
В LED мониторах используются для подсветки светодиоды, которые располагаются либо по бокам дисплея, либо за ним.
Сейчас все производители мониторов и ТВ перешли на LED подсветку, так как она почти в половину сокращает энергопотребление и намного долговечнее чем LCD подсветка.
Если нет подсветки, то дело может быть либо в лампах CCFL, либо в LED-ленте. Если они вообще не горят, то изображение будет настолько тусклым, что на дисплее ничего не будет видно. Только внимательный осмотр включенного монитора под освещением может показать, что изображение все-таки есть. Поэтому, если изображения вообще нет, то первым дело осмотрите включенный монитор под потоком света. Если изображение хоть немного видно, то дальше принимайте меры, либо менять лампы, либо дело в инверторе.
Пропадает подсветка монитора
Монитор у нас включается, работает секунд 5-10 и тухнет. Это говорит о том, что одна из ламп CCFL подсветки дисплея пришла в негодность. Перед этим часть экрана может также немного моргать. Инвертор в этом случае будет уходить в защиту, что и будет проявляться в автоматическом отключении подсветки монитора.
Для того, чтобы мы могли проверить лампы и исключить дефектную, надо купить в радиомагазине высоковольтный конденсатор. 27 пикофарад х 3 киловольта для мониторов диагональю 17 дюймов, 47 пф для монитора 19 дюймов и 68 пф для 22 дюйма.
Данный конденсатор нужно припаять к контактам разъема, к которому подключается лампа подсветки. Саму лампу, разумеется, при этом нужно отключить. Соединяя конденсатор поочередно к каждому разъему, мы добиваемся того, что инвертор у нас перестает уходить в защиту. Монитор заработает, хотя будет немного тусклым.
Конечно, редко кто так делает. Самая фишка — это отключить защиту на самой микросхеме ШИМ ))). Для этого гуглим «снять защиту инвертора xxxxxxx» Вместо «хххххх» ставим марку нашей микросхемы ШИМ. Как-то я отключал защиту на мониторе с микросхемой ШИМ TL494 по схеме ниже, припаяв резистор на 10 КилоОм. Моник работает до сих пор. Нареканий нет).