Как измерить ёмкость и индуктивность с помощью генератора и осциллографа + online-калькулятор
Для многих любителей электроники актуальной является задача измерения емкостей конденсаторов и индуктивностей дросселей, поскольку, в отличие от резисторов, эти компоненты нередко бывают не промаркированы (особенно SMD). Между тем, имея генератор синусоидальных колебаний и осциллограф (приборы, которые должны быть в любой радиолюбительской лаборатории), эта задача довольно просто решается. Всё, что для этого нужно — это вспомнить начальный курс электротехники.
Рассмотрим простейшую схему — последовательно соединённые резистор и конденсатор. Пусть эта схема подключена к источнику синусоидальных колебаний. Запишем уравнения для напряжений на элементах нашей схемы в операторной форме: UR = I * R, UC = -j * I / ωC. Из этих уравнений очевидно, что амплитудные значения напряжений будут относится следующим образом: UR / UC = R * ωC (конечно, напряжения будут сдвинуты по фазе, но нас это в данном случае не волнует, нас волнуют
только амплитуды).
Думаю, что многие уже догадались к чему я клоню. Да-да, из последнего уравнения довольно просто вычисляется ёмкость:
C = UR/UC * 1/ωR или, с учетом того, что ω= 2πf, получим C = UR/UC * 1/2πfR ; (1)
Итак, алгоритм простой: подключаем последовательно с измеряемой ёмкостью резистор, подключаем к этой схеме генератор синусоидальных колебаний и осциллографом измеряем амплитуды напряжений на нашем конденсаторе и резисторе. Изменяя частоту, добиваемся, чтобы амплитуда напряжений на обоих элементах была примерно одинаковой (так измерение получится точнее). Далее, подставляя измеренные значения амплитуд в формулу (1), находим искомую ёмкость конденсатора.
Аналогично можно вывести формулу для подсчета индуктивности:
L = UL/UR * R/ω или, с учётом того, что ω= 2πf, получим L = UL/UR * R/2πf ; (2)
Таким образом, имея генератор синусоидальных колебаний и осциллограф, с помощью формул (1) и (2) оказывается довольно просто вычислить неизвестную ёмкость или индуктивность (благо резисторы практически всегда имеют маркировку).
Алгоритм действий следующий:
1) Собираем схему из последовательно соединённых резистора известного номинала и исследуемой ёмкости (индуктивности).
2) Подключаем эту схему к генератору синусоидальных колебаний и изменением частоты добиваемся того, чтобы амплитуды напряжений на обоих элементах схемы были примерно одинаковы.
3) По формуле (1) или (2) вычисляем номинал исследуемой ёмкости или индуктивности.
Несмотря на то, что наши элементы не идеальные, есть допуск на номинал резистора и всегда есть некоторые погрешности измерений, результат получается довольно точным (по крайней мере можно без труда идентифицировать ёмкость в стандартном ряду). Пусть у меня при измерении ёмкости получилась величина 1,036 нФ. Очевидно, что на исследуемом конденсаторе должна была быть нанесена маркировка 1 нФ.
Для того, чтобы вам легче было сориентироваться с номиналами резисторов, приведу некоторые примеры:
— для ёмкости 15 пФ в схеме с резистором 200 кОм амплитуды напряжений будут примерно равны на частоте 53 кГц;
— для ёмкости 1 нФ в схеме с резистором 10 кОм амплитуды напряжений будут примерно равны на частоте 15,9 кГц;
— для ёмкости 0,1 мкФ в схеме с резистором 680 Ом амплитуды напряжений будут примерно равны на частоте 2,34 кГц;
— для индуктивности 3 мкГн в схеме с резистором 120 Ом амплитуды напряжений будут примерно равны на частоте 6,3 МГц;
— для индуктивности 100 мкГн в схеме с резистором 120 Ом амплитуды напряжений будут примерно равны на частоте 190 кГц.
Таким образом, диапазон измеряемых емкостей и индуктивностей зависит только от диапазона частот, с которыми могут работать ваши генератор и осциллограф.
На основе этого метода можно изготовить прибор для автоматического измерения емкостей и индуктивностей.
Online-калькулятор для расчёта емкостей и индуктивностей:
(для правильности расчётов используйте в качестве десятичной точки точку, а не запятую)
Колебательный контур LC
Колебательный контур — электрическая цепь, в которой могут возникать колебания с частотой, определяемой параметрами цепи.
Простейший колебательный контур состоит из конденсатора и катушки индуктивности, соединенных параллельно или последовательно.
— Конденсатор C – реактивный элемент. Обладает способностью накапливать и отдавать электрическую энергию.
— Катушка индуктивности L – реактивный элемент. Обладает способностью накапливать и отдавать магнитную энергию.
Рассмотрим, как возникают и поддерживаются свободные электрические колебания в параллельном контуре LC.
Основные свойства индуктивности
— Ток, протекающий в катушке индуктивности, создаёт магнитное поле с энергией .
— Изменение тока в катушке вызывает изменение магнитного потока в её витках, создавая в них ЭДС, препятствующую изменению тока и магнитного потока.
Природа электромагнитных колебаний в контуре
Период свободных колебаний контура LC можно описать следующим образом:
Если конденсатор ёмкостью C заряжен до напряжения U, потенциальная энергия его заряда составит.
Если параллельно заряженному конденсатору подключить катушку индуктивности L, в цепи пойдёт ток разряда конденсатора, создавая магнитное поле в катушке.
Внешний магнитный поток создаст ЭДС в направлении противоположном току в катушке, что будет препятствовать нарастанию тока в каждом витке, поэтому конденсатор разрядится не мгновенно, а через время t1, которое определяется индуктивностью катушки и ёмкостью конденсатора из расчёта t1 = .
По истечении времени t1, когда конденсатор разрядится до нуля, ток в катушке и магнитная энергия будут максимальны.
Накопленная катушкой магнитная энергия в этот момент составит.
В идеальном рассмотрении, при полном отсутствии потерь в контуре, EC будет равна EL. Таким образом, электрическая энергия конденсатора перейдёт в магнитную энергию катушки.
Далее изменение (уменьшение от максимума) магнитного потока накопленной энергии катушки будет создавать в ней ЭДС, которая продолжит ток в том же направлении и начнётся процесс заряда конденсатора индукционным током. Уменьшаясь от максимума до нуля в течении времени t2 = t1, он перезарядит конденсатор от нулевого до максимального отрицательного значения (-U).
Так магнитная энергия катушки перейдёт в электрическую энергию конденсатора.
Описанные интервалы t1 и t2 составят половину периода полного колебания в контуре.
Во второй половине процессы аналогичны, только конденсатор будет разряжаться от отрицательного значения, а ток и магнитный поток сменят направление. Магнитная энергия вновь будет накапливаться в катушке в течении времени t3, сменив полярность полюсов.
В течении заключительного этапа колебания (t4), накопленная магнитная энергия катушки зарядит конденсатор до первоначального значения U (в случае отсутствия потерь) и процесс колебания повторится.
В реальности, при наличии потерь энергии на активном сопротивлении проводников, фазовых и магнитных потерь, колебания будут затухающими по амплитуде.
Время t1 + t2 + t3 + t4 составит период колебаний .
Частота свободных колебаний контура ƒ = 1 / T
Частота свободных колебаний является частотой резонанса контура, на которой реактивное сопротивление индуктивности XL=2πfL равно реактивному сопротивлению ёмкости XC=1/(2πfC).
Расчёт частоты резонанса LC-контура:
Предлагается простой онлайн-калькулятор для расчёта резонансной частоты колебательного контура.
Необходимо вписать значения и кликнуть мышкой в таблице.
При переключении множителей автоматически происходит пересчёт результата.
Индуктивность конденсаторов и полное сопротивление
Для того что бы учесть наличие в конденсаторе активное сопротивление r и индуктивность L, кроме емкости C, вместо надо пользоваться полным сопротивлением конденсатора:
[72]
r, z = [Ом]; L = [Гн]; С = [Ф]
Выражение [72] характерно для последовательной эквивалентной схемы конденсатора.
При повышении циклической частоты емкостное сопротивление
уменьшается, а индуктивное сопротивление
растет, поэтому зависимость
должна иметь U – образный характер (рис. 22).
При
(резонансная частота) конденсатор ведет себя уже не как емкость, а как индуктивность:
[73]
Индуктивность конденсаторов очень мала и ее выражают в мкГн и нГн. Например воздушный образцовый конденсатор с емкостью С = 100 пФ индуктивно L = 10 – 20 нГн; емкостью С = 1000 пФ – L = 30 – 50 нГн.
В намотанных спиральных конденсаторах большая индуктивность может быть обусловлена витками спирали. В связи с этим вместо обычной намотки со скрытой фольгой была предложена «безындукционная» намотка с выступающей фольгой (рис. 23).
При такой намотке обкладки смещаются к противоположным торцам секции, что дает возможность замыкания накоротко всех витков спирали. Недостаток – увеличенный вес фольги.
Малые значения индуктивности L можно получить и при обычной намотке, если располагать выводные контакты обеих обкладок ближе друг к другу. В намотанном конденсаторе со скрытой фольгой индуктивность в основном определяется длиной той части обкладок, которая заключена между выводными контактами.
В этой части конденсатора направления токов в обеих обкладках в каждый момент времени совпадают, магнитные поля этих токов складываются и это обуславливает наличие индуктивности. Преимущество безындукционной намотки
при совмещенных выводных контактах – уменьшение активного сопротивления обкладок, что дает некоторое снижение активного сопротивления r при резонансе и уменьшает потери в конденсаторе, особенно при высоких частотах. Кроме того, припайка выводов к выступающим краям обмоток дает резкое повышение надежности контактов, по сравнению с вкладными контактами при обычной намотке со скрытой фольгой. В процессе изготовления цилиндрических спиральных конденсаторов с обычной намоткой иногда оказывается целесообразным получать при намотке в одном конденсаторе несколько параллельно или последовательно соединенных секций. Для получения многосекционного конденсатора с параллельным соединением секций одна обкладка является общей для всех секций, а вторую в процессе намотки несколько раз обрывают, образуя отрезки, длина которых определяет емкости отдельных секций (рис. 25).
Для последовательно соединенных секций обрывы фольги приходиться делать в соответствующих участках обеих обкладок. Ставят по два контакта на одну обкладку, чтобы обеспечить противоположные направления токов.
При последовательном включении индуктивности L складываются, а при параллельном включении складываются их обратные значения, поэтому при параллельном соединении индуктивность конденсатора будет меньше, чем индуктивность отдельных секций. Это является одним из способов снижения индуктивности высоковольтных импульсных конденсаторов, используемых в качестве накопителей энергии.
Для того, чтобы свести к минимуму индуктивность соединительных проводов, применяются специальные проходные конденсаторы (рис. 26).
В проходных конденсаторах имеется внутреннее отверстие, сквозь которое пропускается медная шинка, к ней присоединяется один вывод конденсатора, а второй подсоединяется к корпусу. Шинка изолируется от корпуса конденсатора и включается в разрыв защищаемой линии; корпус конденсатора подсоединяется к земле. Емкость таких конденсаторов надо измерять между любым из изолированных выводов и корпусом. В таком конденсаторе соединительные провода имеют минимальную длину и создают малую индуктивность.