Как прошить esp 01 через ардуино uno

Прошивка ESP8266 через Arduino IDE

В данной статье я рассмотрю прошивку плат ESP8266 через среду разработки Arduino IDE. Arduino IDE позволяет загрузить на плату огромное количество готовых примеров, которые были ранее написаны для плат Arduino, поэтому данный навык будет вам очень полезен при создании своих устройств!

Настройка Arduino IDE для работы с ESP

Первым делом необходимо скачать свежую версию Arduino IDE (https://www.arduino.cc/en/Main/Software) и установить ее на ваш компьютер. Перед началом прошивки платы ESP необходимо добавить дополнительные пакеты в среду разработки Arduino IDE.

Открываем Arduino IDE и добавляем в него возможность работы с платами esp8266, для этого:

1) Переходим в раздел Preferences в меню.

2) В поле «Дополнительные ссылки для Менеджера плат» (Additional Board Manager URLs) вставляем строчку http://arduino.esp8266.com/stable/package_esp8266com_index.json и нижимаеи кнопку «OK».

3) Открываем менеджер плат в меню «Инструменты > Плата > Менеджер плат. » (Go to Tools > Board > Boards Manager…)

4) В появившемся окне в поиске вводим esp8266 и устанавливаем соответствующий пакет

5) Закрываем и заново открываем Arduino IDE. Теперь в списке доступных плат появились платы на основе чипа ESP.

Прошивка NodeMCU ESP8266 Development Board

В плате NodeMCU версии 1.0 используется чип CP2102 (USB to UART Bridge VCP). Чтобы наш компьютер мог видеть плату esp необходимо скачать драйвер данного чита с официального сайта https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers. Скачиваем и устанавливаем драйвер под нужную операционку. После установки драйвера перезапускаем Arduino IDE.

Теперь если подключить плату NodeMCU к компьютеру, то в списке портов вы увидите новое устройство. Для MacOS оно будет иметь вид:

Для проверки работы прошивки загрузим стандартный пример с мигающим светодиодом. Для этого в меню выбираем «Примеры > Basic > Blink».

Откроется новое окно Arduino IDE со стандартным примером, нажимаем на него. Теперь нам необходимо выбрать соответствующую плату и нужный порт. Выбираем NodeMCU 1.0 и порт, на который подключен модуль ESP. Все параметры должны быть такими же как на скриншоте.

Нажимаем кнопку «Загрузить» в верхней части окна:

Код начнет компилироваться:

После компиляции начнется загрузка кода на плату ESP, в нижней части экрана побегут оранжевые пиксели и будут появляться проценты загрузки. В результате загрузка дойдет до 100% и чуть выше вы увидите надпись «Загрузка завершена». Поздравляем, вы только что прошили модуль NodeMCU! Посмотрите на плату — на ней должен начать мигать светодиод!

Прошивка ESP-01

В отличии от NodeMCU в модуле ESP-01 нет встроенного программатора и его нельзя напрямую подключить к USB. Поэтому для прошивки я буду использовать внешний программатор.

Для данного модуля подойдут практические любиые USB-to-UART программаторы, но я заказал специальный программатор с разъемом под ESP-01.

В данном программаторе точно также как и в NodeMCU используется чип CP2102, поэтому нам не надо ставить дополнительный драйвер. Также этот программатор имеет дополнительные пины, через которые можно прошивать модули Sonoff. Теперь просто втыкаем плату в программатор, а программатор в USB.

В меню «Порт» появится знакомый нам cu.SLAB_USBtoUART (Для Windows это будет COM*), выбираем его. В поле «Плата:» выбираем «Generic ESP8266 Module». Все параметры должны быть на скриншоте.

Обратите внимание, что каждый раз перед прошивкой этот программатор необходимо вытыкать и втыкать в USB заново. Также иногда внешние программаторы могут быть не видны в Arduino IDE. В этому случае приходится перезгаружать среду разработки. Поэтому для первых экспериментов с модулем ESP я рекомендую использовать модуль NodeMCU.

Как вы видите подготовить Arduino IDE к работе и прошить первый скетч на ESP не так уж и трудно. В следующей статье я расскажу вам как написать скетч, который будет работать с MQTT сервером, а также как потом подключить девайс к системе OpenHAB2.

Источник

Дружимся с ESP

Здравствуйте, коллеги и энтузиасты!

Последние пару лет практически все прототипирование несложных IoT-устройств я делаю на NodeMCU, хотя зачастую она и великовата по размеру, и дороговата, и избыточна по функционалу. А все потому, что имела неудачный опыт с ESP-01, которая совершенно не поддавалась прошивке. Сейчас пришло время преодолеть этот барьер и освоить другие железки, от которых мне нужно следующее — Wi-Fi и пины для подключения периферии.

В этой статье разберем подключение к платформе Интернета вещей наиболее популярных плат с интерфейсом Wi-Fi. Их можно использовать, чтобы управлять своим устройством дистанционно или чтобы снимать показания с сенсоров через интернет.

Несколько представленных в статье модулей (ESP-01, ESP-07, ESP-12E, ESP-12F) и плат (Goouuu Mini-S1, WeMos D1 mini и NodeMCU V2) базируются на контроллере ESP8266, использование которого позволяет простым и дешевым способом добавить в своё устройство беспроводную связь через Wi-Fi.

Так выглядит модельный ряд модулей на базе чипа ESP8266.

Последняя плата из тех, о которых я расскажу (ESP32 WROOM DevKit v1), построена на контроллере семейства ESP32 — более продвинутой по своим возможностям версии ESP8266.

Все представленные модели можно программировать и загружать прошивки через Arduino IDE точно так же, как при работе с Arduino.

ESP32 WROOM DevKit v1

Настройка среды программирования Arduino IDE

По умолчанию среда IDE настроена только на AVR-платы. Для платформ, представленных ниже, необходимо добавить в менеджере плат дополнительную поддержку.

1) Открываем среду программирования Arduino IDE.

2) В пункте меню File (Файл) выбираем Preferences (Настройки). В окне Additional Boards Manager URLs вводим через запятую адреса http://arduino.esp8266.com/stable/package_esp8266com_index.json и https://dl.espressif.com/dl/package_esp32_index.json.

4) В пункте меню Tools (Инструменты) -> Board (Плата) выбираем Boards manager (Менеджер плат).

Находим в списке платформы на ESP8266 и нажимаем на кнопку Install (Установить).

6) Надпись INSTALLED сообщает, что дополнения успешно установлены.

7) Аналогичным образом устанавливаем дополнение для ESP32.

8) Теперь нам доступны к программированию платформы с модулем ESP8266 и ESP32.

9) Для подключения плат к платформе Интернета вещей используем библиотеку EspMQTTClient. Чтобы ее установить, в пункте меню Tools (Инструменты) выбираем Manage Libraries (Управлять библиотеками). Находим и устанавливаем библиотеку EspMQTTClient. Может появиться сообщение об установке дополнительных библиотек. Выбираем “Install all”.

Примечание — Также для работы с платами понадобится установить драйверы CH340 (WeMos и Goouuu) и CP2102 (для остальных). Их отсутствие повлияет на то, найдет ли Arduino IDE COM-порт, к которому подключена плата.

Код прошивки

Для прошивки всех используемых ниже модулей используем один и тот же код.

Установка Wi-Fi соединения

Подключение к объекту на платформе Rightech IoT Cloud по протоколу MQTT

Отправка рандомных значений по температуре («base/state/temperature») и влажности («base/state/humidity») каждые 5 секунд (PUB_DELAY)

Получение сообщений о переключении света («base/relay/led1»)

Работоспособность кода будем проверять на платформе Rightech IoT Cloud, именно поэтому в качестве адреса MQTT-брокера указан dev.rightech.io. Идентификаторами клиентов служат идентификаторы объектов, созданных на платформе. Под каждую проверку я завела на платформе отдельный объект, именно поэтому во всех скринах кодов, которые будут далее представлены, отличается только строка .

Прим. — Можно подключаться и к одному и тому же объекту, тогда можно использовать один и тот же код для прошивки всех плат без изменений, однако следите, чтобы в таком случае платы не подключались к одному и тому же объекту одновременно, иначе случится коллизия.

Модули на базе ESP8266

Для работы с модулями на базе ESP8266 есть два варианта:

Работа с AT командами (в стандартной прошивке Wi-Fi модуль общается с управляющей платой через «AT-команды» по протоколу UART);

Wi-Fi модуль как самостоятельный контроллер (все представленные модули очень умные: внутри чипа прячется целый микроконтроллер, который можно программировать на языке C++ через Arduino IDE).

В статье будем рассматривать второй вариант — прошивка модулей в виде самостоятельного полноценного устройства. Здесь также есть два варианта прошивки с точки зрения железа:

Через плату Arduino;

Через USB-Serial адаптер.

Рассмотрим второй вариант — использовать адаптер на базе чипа CP2102 (например, такой https://www.chipdip.ru/product/cp2102-usb-uart-board-type-a?frommarket=https%3A%2F%2Fmarket.yandex.ru%2Fsearch%3Frs%3DeJwzSvKS4xKzLI&ymclid=16146772489486451735000001). Обязательно обратите внимание на то, чтобы адаптер позволял выдавать выходное напряжение 3.3 В, не больше!

1. ESP-01

ESP-01 — самый популярный модуль на ESP8266. PCB антенна обеспечивает дальность до 400 м на открытом пространстве.

Внешний вид

Питание

Родное напряжение модуля — 3,3 В. Его пины не толерантны к 5 В. Если вы подадите напряжение выше, чем 3,3 В на пин питания, коммуникации или ввода-вывода, модуль выйдет из строя.

Источник

Модуль Wi-Fi ESP8266 (ESP-01): подключение, прошивка и распиновка

Модуль ESP-01 с чипом ESP8266 предназначен для связи устройства с беспроводными сетями по WiFi.

Видеообзор

Общие сведения

ESP-01 — плата-модуль WiFi на базе популярного чипсета ESP8266EX . На борту платы находится микросхема Flash-памяти объёмом 2 МБ, чип ESP8266EX, кварцевый резонатор, два индикаторных светодиода и миниатюрная антенна из дорожки на верхнем слое печатной платы в виде змейки. Flash-память необходима для хранения программного обеспечения. При каждом включении питания, ПО автоматически загружается в чип ESP8266EX.

По умолчанию модуль настроен на работу через «AT-команды». Управляющая плата посылает команды — Wi-Fi модуль выполняет соответствующую операцию.

Но внутри чипа ESP8266 прячется целый микроконтроллер, который является самодостаточным устройством. Прошивать модуль можно на разных языках программирования. Но обо всё по порядку.

Работа с AT командами

Подключение и настройка

В стандартной прошивке Wi-Fi модуль общается с управляющей платой через «AT-команды» по протоколу UART.

На всех платах Iskra и Arduino присутствует хотя бы один аппаратный UART — HardwareSerial. Если же по каким то причинам он занят другим устройством, можно воспользоваться программным UART — SoftwareSerial.

HardwareSerial

На управляющей плате Iskra JS и платах Arduino с микроконтроллером ATmega32U4 / ATSAMD21G18 данные по USB и общение через пины 0 и 1 осуществляется через два раздельных UART . Это даёт возможность подключить Wi-Fi модуль к аппаратному UART на пинах 0 и 1 .

Список поддерживаемых плат:

Для примера подключим модуль Wi-Fi к платформе Iskra Neo.

Прошейте управляющую платформу кодом ниже.

Код прошивки

SoftwareSerial

Некоторые платы Arduino, например Uno, прошиваются через пины 0 и 1 . Это означает невозможность использовать одновременно прошивку/отладку по USB и общение с Wi-Fi модулем. Решение проблемы — программный UART . Подключите пины TX и RX ESP-модуля к другим контактам управляющей платы и используйте библиотеку SoftwareSerial.

Для примера подключим управляющие пины Wi-Fi модуля TX и RX — на 8 и 9 контакты управляющей платы. Прошейте управляющую платформу кодом ниже.

Код прошивки

HardwareSerial Mega

На платах форм-фактора Arduino Mega 2560 аппаратный UART, который отвечает за передачу данных через пины 1 и 0 , отвечает также за передачу по USB. Это означает невозможность использовать одновременно UART для коммуникации с Wi-Fi модулем и отладки по USB.

Но на платах такого форм-фактора есть ещё дополнительно три аппаратных UART:

Список поддерживаемых плат:

Подключите Wi-Fi модуль к объекту Serial1 на пины 18 и 19 на примере платы Mega 2560 Прошейте управляющую платформу кодом ниже.

Код прошивки

Примеры работы

Рассмотрим несколько примеров по работе с «AT-командами»

Тестовая команда «AT»

Откройте монитор порта. Настройте скорость соединения — 9600 бод. Конец строки — NL & CR . Введите команду AT и нажмите «Отправить». Это — базовая команда для проверки работы Wi-Fi модуля. В ответ получим «OK»: Если ответа нет или появляются непонятные символы — проверьте правильность подключения и настройки скорости обмена данными.

Настройка режима работы

Wi-Fi модуль умеет работать в трёх режимах:

Переведём чип в смешанный режим командой:

После установки модуль должен ответить «OK»:

В отличии от аппаратного UART (HardwareSerial), за работу программного UART (SoftwareSerial) отвечает микроконтроллер, который назначает другие пины в режим работы RX и TX , соответственно и данные которые приходят от Wi-Fi модуля обрабатывает сам микроконтроллер во время программы. По умолчанию скорость общения Troyka Wi-Fi равна 115200 , что значительно выше чем позволяет библиотека SoftwareSerial. В итоге часть информации которая приходит с Wi-Fi модуля будет утеряна. Если вы используете плату с HardwareSerial подключением модуля можете пропустить пункт настройки скорости и сразу перейти к дальнейшей работе с модулем.

AT установка скорости общения

Для корректной работы с большими объемами необходимо понизить скорость соединения модуля и микроконтроллера. Для этого используйте «AT-команду»:

После проделанной операции, измените скорость программного UART в скетче программы и прошейте плату.

По итогу программный UART успеет обработать каждый пришедший байт с Wi-Fi модуля.

AT сканирование WI-FI сетей

Откройте Serial-порт и отправьте на модуль «AT-команду» для сканирования всех доступных Wi-Fi сетей:

При наличии доступных WI-FI сетей в ответ получим сообщение:

Для продолжение работы используйте перечень «AT-команд»

Wi-Fi модуль как самостоятельный контроллер

ESP-01 (ESP8266) — очень умный модуль. Внутри чипа прячется целый микроконтроллер, который можно программировать на языке C++ через Arduino IDE и JavaScript через Espruino Web IDE .

Настройка железа

Ввиду отсутствия у платформы ESP-01 собственного USB-порта, понижающего преобразователя и отсутствия толерантности к 5 вольтам, подключите её к компьютеру, используя один из перечисленных способов:

Схема через Arduino Uno

Для сборки программатора понадобится:

Необходимо каждый раз выполнять перед прошивкой модуля.

Схема через USB-Serial адаптер

Для сборки программатора понадобится:

Необходимо каждый раз выполнять перед прошивкой модуля.

Программирование на C++

После выполненных действий модуль ESP-01 готов к программированию через Arduino IDE.

Подробности о функциях и методах работы ESP-01 (ESP8266) на языке C++ читайте на ESP8266 Arduino Cores.

Программирование на JavaScript

После выполненных действий модуль ESP-01 готов к программированию через Espruino Web IDE.

Подробнее о функциях и методах работы ESP8266 на языке JavaScript читайте на Espruino.

Восстановление стандартной АТ-прошивки

После программирования платформы в режиме самостоятельного контроллера может понадобиться восстановить на модуле стандартную AT-прошивку. Для этого необходимо воспользоваться утилитой Flash Download Tool.

Элементы платы

Чип ESP8266EX

Чип ESP8266 — выполнен по технологии SoC (англ. System-on-a-Chip — система на кристалле). В основе кристалла входит процессор семейства Xtensa — 32-х битный Tensilica L106 с частой 80 МГц с ультранизким энергопотреблением, радиочастотный трансивер с физическим уровнем WiFi IEEE 802.11 b/g/ и блоки памяти SRAM. Мощности процессорного ядра хватает для работы сложных пользовательских приложений и цифровой сигнальной обработки.

Программное приложение пользователя должно храниться на внешней микросхеме Flash-памяти и загружаться в ESP8266EX через один из доступных интерфейсов (SPI, UART, SDIO и др.) каждый раз в момент включения питания системы.

Чип ESP8266 не содержит в себе Flash-память и многих других компонентов для пользовательского старта. Микросхема является основой на базе которой выпускаются модули с необходимой периферией, например ESP-01.

Светодиодная индикация

Имя светодиода Назначение
LED Индикаторный светодиод подключённый к цифровому пину 1
POWER Индикатор питание на модуле

Распиновка

Пины питания

Пины ввода/вывода

В отличии от большинства плат Arduino, родным напряжением платформы ESP-01 является 3,3 В, а не 5 В. Выходы для логической единицы выдают 3,3 В, а в режиме входа ожидают принимать не более 3,3 В. Большее напряжение может повредить модуль!

Будьте внимательны при подключении периферии: убедитесь, что она может корректно функционировать в этом диапазоне напряжений.

Источник

Adblock
detector