Как подключить RGB светодиод к Ардуино
На этом занятии мы будем использовать цифровые и аналоговые выходы с «широтно импульсной модуляцией» на плате Arduino для включения RGB светодиода с различными оттенками. Использование RGB LED ленты позволяет создать освещение интерьера с любым оттенком цвета. Расскажем про устройство и распиновку полноцветного (RGB) светодиода и рассмотрим директиву #define в языке C++.
Устройство и назначение RGB светодиода
Для отображения всей палитры оттенков вполне достаточно три цвета, используя RGB синтез (Red — красный, Green — зеленый, Blue — синий). RGB палитра используется не только в графических редакторах, но и в сайтостроении. Смешивая цвета в разной пропорции можно получить практически любой цвет. Преимущества RGB светодиодов в простоте конструкции, небольших габаритах и высоком КПД светоотдачи.
RGB светодиоды объединяют три кристалла разных цветов в одном корпусе. RGB LED имеет 4 вывода — один общий (анод или катод имеет самый длинный вывод) и три цветовых вывода. К каждому цветовому выходу следует подключать резистор. Кроме того, модуль RGB LED Arduino может сразу монтироваться на плате и иметь встроенные резисторы — этот вариант более удобный для занятий в кружке робототехники.
Фото. Распиновка RGB светодиода и модуль с RGB светодиодом для Ардуино
Распиновка RGB светодиода указана на фото выше. Заметим также, что для многих полноцветных (трехцветных) светодиодов необходимы светорассеиватели, иначе будут видны составляющие цвета. Далее подключим трехцветный светодиод к Ардуино и заставим его сначала мигать разными цветами, а затем плавно переливаться разными цветами с помощью «широтно импульсной модуляции».
Управление RGB светодиодом на Ардуино
Для этого занятия потребуется:
- Arduino Uno / Arduino Nano / Arduino Mega;
- макетная плата;
- RGB светодиод;
- 3 резистора 220 Ом;
- провода «папа-мама».
Модуль «RGB светодиод» можно подключить напрямую к плате, без проводов и макетной платы. Подключите модуль с полноцветным RGB светодиодом к следующим пинам: Минус — GND, B — Pin13, G — Pin12, R — Pin11 (смотри первое фото). Если вы используете RGB LED (Light Emitting Diode), то подключите его по схеме на фото. После подключения модуля и сборки схемы на Ардуино загрузите скетч в плату.
Скетч для мигания RGB светодиодом на Ардуино
Пояснения к коду:
- с помощью директивы #define мы заменили номер пинов 11, 12 и 13 на соответствующие имена RED , GRN и BLU . Это сделано для удобства, чтобы не запутаться в скетче и понимать какой цвет мы включаем;
- в процедуре void loop() мы поочередно включаем все три цвета на RGB.
Плавное управление RGB светодиодом
Управление rgb светодиодом на Arduino можно сделать плавным, используя аналоговые выходы с «ШИМ». Для этого ножки светодиода необходимо подключить к аналоговым выходам, например, к пинам 11, 10 и 9. И подавать на аналоговые выходы микроконтроллера различные значения ШИМ (PWM), для этого воспользуемся циклом for, с помощью которого можно повторять нужные команды в программе.
Скетч для плавного мигания RGB светодиода
Пояснения к коду:
- с помощью директивы #define мы заменили номера пинов 9, 10 и 11 на соответствующие имена RED , GRN и BLU . Это сделано для удобства, чтобы не запутаться в скетче и понимать какой цвет мы включаем;
- пины 9, 10 и 11 мы использовали, как аналоговые выходы analogWrite .
Плавное включение нескольких цветов RGB LED
Заключение. Аналоговые выходы на Ардуино используют «широтно импульсную модуляцию» для получения различной силы тока. Мы можем подавать на все три цветовых входа на светодиоде различное значение ШИМ-сигнала в диапазоне от 0 до 255, что позволит нам получить на RGB LED Arduino практически любой оттенок света. Если у вас остались вопросы — оставляйте их в комментариях к этой записи.
RGB светодиоды и ленты
Немного теории
Я думаю все знают, что свет – это поток фотонов, но в то же время он является электромагнитной волной, излучением. Человеческий глаз воспринимает очень узкий диапазон этого излучения: приблизительно от 390 до 790 ТГц (террагерц), так называемое видимое излучение или видимый свет. “Ориентироваться” в этом диапазоне электромагнитного излучения принято в обратной величине – длине волны, измеряемой в данном случае в нанометрах (нм): человеческий глаз видит излучение в диапазоне от
400 нм (фиолетовый) до
800 нм (красный). Между синим и красным есть ещё один важный цвет – зелёный: Красный (Red, R), зелёный (Green, G) и синий (Blue, B) являются основными цветами: смешивая эти три цвета в разных пропорциях можно получить плюс-минус все остальные цвета.
Этот наглядный “двухмерный” случай с кругами вы тоже скорее всего видели. Если раскручивать тему дальше, то можно задаться интенсивностью каждого цвета и получить итоговый цвет как функцию от трёх переменных, или же трёхмерное цветовое пространство RGB. Если интенсивности всех трёх цветов равны нулю – получится чёрный цвет, если все три максимальны – белый, а всё что между – оттенки:
На картинке выше интенсивность каждого цвета представлена диапазоном 0-255. Знакомое число, не правда ли? Всё верно, в большинстве применений диапазон каждого цвета кодируется одним байтом, потому что это удобно с точки зрения программирования и достаточно с точки зрения глаза: три цвета – три байта – 256*256*256 == 16.8 миллионов оттенков. Да, именно эта цифра часто фигурирует в рекламах смартфонов и телевизоров, и именно столько оттенков мы можем абсолютно не напрягаясь получить при использовании Arduino и RGB светодиодов, о чём и поговорим в этом уроке.
RGB светодиоды
RGB светодиод представляет собой по сути три светодиода в одном корпусе. Чтобы не плодить лишние выводы, все аноды или катоды светодиодов объединяются и получается 4 контакта: R, G, B и общий. Общим может быть как минус-катод (Common Cathode), так и плюс-анод (Common Anode): Также на этой картинке показана распиновка типичного RGB светодиода: самая длинная нога – общий вывод, крайняя рядом с ней – красный, с другой стороны зелёный дальняя крайняя – синий. К Arduino такой светодиод подключается точно так же, как если бы мы подключали три отдельных светодиода (читай предыдущий урок про светодиоды): на каждый цвет нужен токоограничивающий резистор, а общую ногу нужно подключать в зависимости от того, анод она или катод.
Можно управлять каждым цветом точно так же, как если бы это были отдельные светодиоды. Также не забываем про подключение: если у светодиода общий катод, то высокий сигнал ( digitalWrite(pin, HIGH); ) с управляющих пинов будет включать выбранный цвет, а если общий анод – то выключать. Соответственно плавное управление яркостью при помощи ШИМ работает по той же логике: у общего катода analogWrite(pin, 200); включит цвет почти на полную яркость, а у общего анода – почти полностью погасит. RGB светодиоды можно дёшево найти на Aliexpress, а именно:
В качестве магазина рекомендую CHANZON, самые хорошие светодиоды и чипы/матрицы.
RGB ленты
RGB светодиодные ленты устроены аналогично одноцветным лентам и RGB светодиодам: в 12 Вольтовой ленте светодиоды каждого цвета соединяются по три штуки с токоограничивающим резистором и образуют сегмент ленты, далее эти сегменты подключаются параллельно. Также лента имеет общий вывод со всех цветов, в большинстве случаев это общий анод. Почему? Помните, в уроке про управление нагрузкой я говорил, что чаще всего используют N-канальные полевые транзисторы, потому что они дешевле, удобнее в применении и имеют более удачные характеристики? Вот именно поэтому! Драйверы для RGB лент также делают на основе N-канальников, поэтому найти в продаже ленту с общим катодом даже вряд-ли получится. В качестве магазина на aliexpress рекомендую BTF Lighting , самые качественные ленты. Итак, как нам подключить RGB светодиодную ленту к Arduino? Точно так же, как обычную! Но тут я добавлю ещё несколько интересных вариантов.
MOSFET
Нам понадобятся три полевых транзистора и резисторы им в обвязку (почему и зачем – читай в уроке про управление нагрузкой). Подключается всё вот по такой схеме: Если нужно плавное управление яркостью цветов – подключаем к ШИМ пинам, если просто вкл/выкл – можно к обычным. Свой драйвер на плате можно развести примерно вот так (корпуса D-pak):
LED Amplifier
У китайцев есть готовые драйверы для “усиления” сигнала на RGB ленту, по сути те же три транзистора что выше, но всё красивое и готовое. Подключается следующим образом:
Драйвер Н-моста
Ну и экзотический вариант: использовать полномостовой драйвер для моторов. Почему нет? Количество выходов у таких драйверов всегда кратно двум (для подключения одного мотора), так что это отличный вариант для управления также RGBW лентой. Драйверы можно найти на aliexpress по названию.
Программирование
Программирование эффектов для управления RGB цветом заключается в изменении интенсивностей трёх цветов, то есть трёх численных значений. У меня есть мощная библиотека для RGB светодиодов и лент, в ней реализовано очень много различных удобных инструментов для работы с цветом.
Библиотека GRGB
- Поддержка драйверов с общим анодом и общим катодом
- Настройка яркости
- Гамма-коррекция яркости (квадратный CRT)
- Библиотека может не привязываться к пинам и просто генерировать значения 8 бит
- Быстрые оптимизированные целочисленные вычисления (не везде)
- Плавный переход между любыми цветами (не блокирует выполнение кода)
- Установка цвета разными способами:
- RGB
- HSV
- Быстрый HSV
- Цветовое колесо (1530 значений)
- Цветовое колесо (255 значений)
- Теплота (1000-40000К)
- HEX цвета 24 бита
- HEX цвета 16 бит
- 17 предустановленных цветов
Например плавная смена цвета по спектру будет выглядеть вот так:
В рамках этого урока мы рассмотрим некоторые алгоритмы, потому что это интересно и может пригодиться где-то ещё.
Хранение цвета
Что касается хранения цветовой информации, то это могут быть как три отдельных байта byte r, g, b; , так и более крупный тип данных, например так: long color; . Во втором случае цвет принято записывать в HEX представлении: красный, зелёный и синий байты идут друг за другом 0xRRGGBB . Напомню, что один байт в 16-ричном представлении может иметь значение от 0x00 (0) до 0xFF (255). Таким образом например цвет 0xBBA000 – жёлтый средней яркости ( 0xBB красный, 0xA0 зелёный, 0x0 синий). Такое представление чаще всего встречается в веб-разработке, при работе с микроконтроллером удобнее хранить цвет в байтах. Вот так можно конвертировать цвет из HEX в байты и наоборот:
Может пригодиться при связке Arduino и веба.
Включение цветов
Как я уже писал выше, включение того или иного цвета производится точно так же, как в уроке про обычные светодиоды. Для плавного управления яркостью используется ШИМ сигнал.
Для плавного управления цветом можно использовать потенциометры:
Цветовое колесо
Первый очевидный эффект – плавное перетекание одного цвета в другой. Это можно сделать линейно, вот таким образом: Реализовать это можно просто через условия. Продолжим предыдущий пример:
Пространство HSV
Следующий вариант более интересен тем, что помимо цвета позволяет настроить его яркость и насыщенность. Такая цветовая модель называется HSV – (Hue, Saturation, Value), или (Цвет, Насыщенность, Яркость), в этом цветовом пространстве гораздо удобнее выбирать нужный цвет. Представить его можно цилиндром: Светодиод и лента работают в пространстве RGB, HSV цвет нужно конвертировать в RGB для включения соответствующих каналов цвета. В подробности работы алгоритма вдаваться не будем, тем более что существует много разных вариантов его реализации, можно найти их в интернете по запросу HSV to RGB C++. Вот один из них, который использую я:
На этом этапе я могу вам сказать, что после прочтения всех предыдущих уроков вы можете самостоятельно открыть и изучить исходник библиотеки и при желании взять оттуда нужный алгоритм или эффект!
Подключение большого количества RGB
У меня на сайте есть статья, где рассказано об алгоритме динамической индикации RGB светодиодов. Она позволяет подключить несколько RGB светодиодов или лент с возможностью изменения цвета.