Импульсный источник питания на базе блока из DVD-проигрывателя
Эпоха расцвета оптических носителей информации, таких как CD и DVD, оказалась яркой, но недолгой. Сегодня DVD-проигрыватели после износа или поломки уже не ремонтируют, а выбрасывают или в лучшем случае разбирают на детали. Недорогие DVD-проигрыватели обычно содержат в виде отдельного модуля импульсный блок питания мощностью 6. 20 Вт, который после небольшой доработки можно с успехом применить для питания других устройств.
Один из узлов DVD-проигрывателя BBK DV31851 — его блок питания SKY-P00807, который пригоден для повторного использования. Он имеет три выходных канала (+5 В,+12 В,-12 В) суммарной мощностью около 14 Вт. На базе этого блока удалось изготовить зарядно-питающее устройство для различных мобильных мультимедийных устройств. По мнению автора, оно обладает значительно лучшими параметрами, в том числе надёжностью, чем многочисленные малогабаритные зарядные устройства, которыми комплектуют сотовые телефоны, планшетные компьютеры, электронные книги, МП-3-плейеры, навигаторы и другие современные «игрушки».
Первым этапом доработки блока SKY-P00807 стала установка на его сетевом входе помехоподавляющего фильтра, собранного по схеме, изображённой рис. 1. Плавкая вставка F601 былаперенесенас печатной платы блока в держатель, установленный на корпусе устройства. Там же на корпусе был установлен отсутствовавший ранее выключатель питания SA1. Остальные элементы фильтра удалось разместить на печатной плате блока.
Рис. 1. Схема помехоподавляющего фильтра
Теперь напряжение сети
230 В через замкнутые контакты выключателя и плавкую вставку, а также через уменьшающие пусковой ток резисторы R1 и R2 поступает на LC-фильтр C1L1C2. После фильтра оно попадает на сетевой вход блока. Варистор RU1 защищает устройство от перенапряжений в питающей сети.
Установка ограничительных резисторов позволила заменить плавкую вставку на ток 1 А аналогичной на 0,25 А. Эти резисторы уменьшили также вероятность повреждения блока питания импульсными сетевыми помехами. С этой же целью из блока был удалён высоковольтный керамический конденсатор, соединявший общие провода первичной и вторичных цепей преобразователя напряжения.
Двухобмоточный дроссель L1 — промышленного изготовления, подойдёт любой аналогичный малогабаритный дроссель с индуктивностью обмоток не менее 1 мГн и общим их сопротивлением не более 40 Ом. Чем больше индуктивность, тем лучше.
В процессе доработки в блоке был обнаружен вздувшийся оксидный сглаживающий конденсатор выпрямителя напряжения +5 В. Этот конденсатор ёмкостью 470 мкФ был заменён оксидным конденсатором ёмкостью 1500 мкФ, параллельно которому был припаян керамический конденсатор ёмкостью 10 мкФ. Для повышения выходного напряжения с +5 В до +5,6 В параллельно резистору номиналом 10 кОм, включённому между выводами 1 и 2 имеющейся в блоке микросхемы параллельного стабилизатора напряжения TL431, был подключён резистор сопротивлением 43 кОм.
Интегральная микросхема TNY275PN импульсного преобразователя напряжения ранее работала с теплоотводом лишь в виде участка фольги на плате. Для облегчения температурного режима этой микросхемы к её теплоотводящим выводам 5-8 был припаян дополнительный теплоотвод — медная пластина с площадью охлаждающей поверхности 3 см 2 .
Конденсатор C601 (рис. 1) был заменён конденсатором такой же ёмкости, но на рабочее напряжение 450 В вместо 400 В. Это было сделано, чтобы за счёт длинных выводов нового конденсатора отодвинуть его подальше от нагревающейся микросхемы TNY275PN.
При экспериментах с блоком питания было выяснено, что в случае подключения нагрузки только к выходу +5 В (+5,6 В после доработки) напряжение между обкладками сглаживающих конденсаторов выпрямителей выходных напряжений +12 В и -12 В превышало 20 В. Поскольку упомянутые выходы доработанного блока не используются, диоды этих выпрямителей, обозначенные на его плате как D610 и D611, были демонтированы.
Если в дорабатываемом блоке питания оказались неисправными высокочастотные выпрямительные диоды, то их можно заменить соответствующими по допустимому обратному напряжению диодами из серий КД247, UF400x. Ими же можно заменить и диоды 1 N4007. Неисправный оптрон EL817 заменяют любым четырёхвыводным с цифрами 817 в названии, например, LTV817 или PC817. Вместо микросхемы TL431 подойдёт AZ431 или LM431 в корпусе TO-92.
Конденсаторы фильтра C1 и C2 — плёночные или керамические, способные работать при переменном напряжении частотой 50 Гц не менее 250 В. Их ёмкость может находиться в интервале 4700. 10000 пФ. Дополнительно установленные в блок оксидные конденсаторы — К53-19, К53-30 или импортные аналоги конденсаторов К50-35и К50-68. Дисковый варистор RU1 — TVR10471, который можно заменить MYG14-471, MYG20-471, FNR-14K471, FNR-20K471 или GNR20D471K. Отдавайте предпочтение варистору в корпусе большего диаметра.
Напряжение +5,6 В с выхода блока питания было подано на дополнительно изготовленный модуль, схема которого представлена на рис. 2. К его разъёмам XP1, XS1 и XS2 можно одновременно подключить три нагрузки с общим потребляемым током до 2 А. Выходное напряжение — около +5 В.
Рис. 2. Схема дополнительно изготовленного модуля
При подключении нагрузки к розетке XS1 германиевый транзистор VT1 открывается падением напряжения на резисторе R3 и включает светодиод HL2. При комнатном освещении его свечение становится заметным уже при токе нагрузки 10 мА. Аналогичным образом работает узел натранзисторе VT2 и светодиоде HL3 при подключении нагрузки к розетке XS2. Диоды Шотки VD3 и VD6 ограничивают падение напряжения на резисторах R3 и R8 при росте тока нагрузки, защищая этим эмиттерные переходы транзисторов VT1 и VT2.
Разъём ХР1 представляет собой разветвитель, оснащённый штекерами разного типа. При подключении к нему нагрузки светодиоды HL2 и HL3 будут светиться одновременно.
Некоторые мобильные устройства по окончании зарядки встроенных в них аккумуляторов «забывают» закрыть соответствующий электронный ключ. В результате этого напряжение аккумулятора поступает на гнездо их внешнего питания, что может привести к тому, что одно мобильное устройство с разряженным аккумулятором будет потреблять энергию заряженного аккумулятора другого. Для предотвращения такой ситуации выходы источника питания развязаны диодами Шотки VD2, VD4, VD5, VD7.
Ограничительный диод (сапрессор) VD1 защищает подключённые к разъёмам нагрузки от повреждения повышенным напряжением при неисправности блока питания. Светодиод HL1 светит при включении устройства в сеть. Фильтр C1L1L2C3C4 снижает уровень пульсаций выходного напряжения импульсного блока питания. Их размах на разъёмахXP1, XS1 и XS2 не превышает 10 мВ при токе нагрузки 2 А. Это значительно меньше, чем у различных телефонных зарядных устройств, где пульсации могут достигать сотен милливольт.
Детали устройства по схеме на рис. 2 установлены на монтажной плате размерами 75×25 мм. Монтаж — двухсторонний навесной. Резисторы R5 и R10 припаяны непосредственно к контактам розеток XS1 и XS2. Возле этих розеток установлены светодиоды HL2 и HL3.
Дроссели L1, L2 — промышленного изготовления на H-образных магнито-проводах, чем больше их индуктивность и меньше сопротивление обмоток, тем лучше. Германиевые транзисторы SFT352 можно заменить отечественными из серий МП25, МП26, МП39-МП42. Диоды, входящие в сборки MBRD620CT соединены параллельно для повышения надёжности, снижения нагрева и уменьшения падения напряжения. При подборе диодов им на замену отдавайте предпочтение мощным низковольтным диодам Шотки. Подойдут, например, MBRD630CT, MBRF835, MBRD320, MBRD330, 1N5820, 1N5821. Ограничительные диоды P6KE6.8A можно заменить стабилитронами 1N5342. Светодиоды могут быть любого типаобщего применения непрерывного свечения, например, серий КИПД40, L-1053, L-173.
Устройство собрано в пластмассовом корпусе размерами 172x72x37 мм. Расположение его узлов внутри корпуса показано на рис. 3. Масса конструкции — 240 г без шнуров питания. Изготовленный источник питания при напряжении в сети 230 В потребляет от неё ток 1,5 мА в режиме холостого хода и около 26 мА при токе нагрузки 1 A.
Рис. 3. Расположение узлов устройства внутри корпуса
Приятной неожиданностью стало то, что даже без экранирования импульсного блока питания описанное устройство не оказывает заметного негативного влияния на качество приёма вещательных радиостанций всех диапазонов, даже если радиоприёмник стоит рядом. Ведь обычные телефонные зарядные устройства своими помехами зачастую полностью глушат радиоприём даже на УКВ-диапазонах.
Кроме различных цифровых мобильных мультимедийных устройств, к этому источнику питания можно подключать «четырёхаккумуляторные» фотоаппараты и видеокамеры, рассчитанные на питание напряжением 4,8. 6,4 В, радиоприёмники, детские игрушки. Подобным образом можно доработать и использовать другие импульсные блоки питания, демонтированные из неисправных или ненужных бытовых электронных приборов, например, блок GL001A1. В некоторых случаях доработка может быть упрощена, поскольку во многих блоках двухобмоточный дроссель на сетевом входе уже и м еетс я.
А. Бутов, с. Курба Ярославской обл.
Мнения читателей
Нет комментариев. Ваш комментарий будет первый.
Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу:
Импульсные блоки питания DVD-проигрывателя Philips DVDQ50
Фирма PHILIPS является одним из мировых лидеров по производству DVD-проигрывателей.Рассмотрим модели DVDQ40 и DVDQ50, очень близкие по схемным и конструктивным решениям. Они комплектуются одинаковыми импульсными блоками питания (ИБП). Для стран ЕС этот блок имеет наименование EPM (Part № 3122 427 22920 или 22930), а для остальных стран — Billion (Part № 3139 248 70851). В странах СНГ можно встретить комплектацию проигрывателя как с одним, так и с другим блоком. В настоящей статье приведено подробное описание ИБП Billion и некоторые особенности его аналога — EPM.
Импульсные блоки питания Billion и EPM, как и DVD-проигрыватель, имеют два режима работы: рабочий (operational) и дежурный (standby). ИБП обеспечивают узлы DVD-проиг-рывателя соответствующими напряжениями питания в каждом из этих режимов (см. табл. 1). При этом обеспечивается групповая, а по некоторым каналам еще и раздельная стабилизация напряжений. Оба ИБП обеспечивают гальваническую развязку остальных узлов DVD-проиг-рывателя от питающей сети.
Импульсный блок питания Billion (Part № 3139 248 70851)
Основой ИБП Billion является об-ратноходовый импульсный преобразователь (инвертор), который собран на МДП транзисторе с N-кана-лом Q1 (SSS6N60A), импульсном трансформаторе T1 EERL-28 и ШИМ контроллере IC1 (SD3842A).
Микросхема SD3842A — это аналог более распространенной микросхемы UC3842A. Она представляет собой ШИМ контроллер для импульсных источников питания, управляющий внешним ключом на полевом транзисторе со структурой МДП. Эти микросхемы могут изготавливаться в разных типах корпусов. В блоке питания Billion используется микросхема в корпусе DIP-8. Функциональная схема этой микросхемы представлена рис. 1, а назначение выводов в табл. 2.
Примечание. Обозначение выводов микросхемы в табл. 2 соответствует принципиальной схеме рис. 2.
Микросхема SD3842A имеет следующие особенности:
максимальное значение рабочей частоты преобразователя — до 500 кГц;
питание времязадающей цепи стабильным напряжением 5 В от внутреннего стабилизатора микросхемы через вывод 8;
Таблица 1. Выходные напряжения ИБП проигрывателя DVDQ50
Обозначение на принципиальной схеме | Значение, В | Применение |
+12V_stdby | 12 | Используются в дежурном и рабочем режимах |
+5V_ stdby | 5 | |
+5V_digital | 5 | |
+5V_AV | 5 | Используются только в рабочем режиме |
3V3 | 3,3 | |
-5V | -5 | |
-40V | -40 |
Таблица 2. Назначение выводов микросхемы ШИМ контроллера SD3842A (UC3842A) в корпусе DIP-8
Выводы | Обозначение | Назначение |
1 | COMP | Выход усилителя ошибки для подключения цепи корректирующей ООС (Compensation) |
2 | VFB | Инвертирующий вход усилителя ошибки, на который поступает управляющее напряжение ООС (VOLTAGE FEEDBACK), обеспечивающее стабилизацию выходных напряжений источника питания |
3 | C.S | Вход сигнала от датчика тока (CURRENT SENSE) выходного ключа |
4 | Rt/Ct | Вывод подключения времязадающей цепи. Определяет максимальное значение рабочей частоты преобразователя (до 500 кГц) |
5 | GND | Общий |
6 | Output | Выход импульсов управления выходным полевым ключом |
7 | VCC | Вход напряжения питания |
8 | VREF | Выход стабильного напряжения 5 В для питания времязадающей цепи |
Рис. 1. Функциональная схема микросхемы ШИМ контроллера SD3842A (UC3842A)
в цепях питания микросхемы используется пороговое устройство с гистерезисом UVLO (Undervoltage Lockout), которое при включении подает напряжение питания VCC с выв. 7 на внутренний стабилизатор (когда его значение достигнет 16 В) и отключает его при уменьшении напряжения на выв. 7 до 10 В (эту схему еще называют «старт-стопной»);
• микросхема имеет защиту от перегрузки по току выходного ключа. Для этого последовательно в цепь истока МДП транзистора (силового ключа) устанавливается резистор — датчик тока. Пилообразное напряжение обратной связи, пропорциональное току выходного ключа, с датчика тока поступает на выв. 3 микросхемы;
• микросхема имеет тотемный выход (двухтактный каскад на комплементарных биполярных транзисторах).
Рассмотрим работу ИБП Billion по принципиальной схеме, которая приведена на рис. 2.
Назначение основных элементов ИБП Billion приведено в табл. 3.
Сетевой выпрямитель ИБП собран на диодах D1-D4. На его входе установлен помехоподавляющий фильтр, а на выходе — фильтрующий конденсатор С5. Все указанные цепи достаточно просты и дополнительных пояснений не требуют. Варистор ZNR1 и искровой разрядник SP1 защищают ИБП и весь аппарат от перегрузки при значительном увеличении напряжения сети, например при грозовом разряде (молнии). Резистор R55 ограничивает ток заряда конденсатора С5, защищая тем самым диоды выпрямительного моста от перегрузки в момент включения аппарата в сеть.
Постоянное напряжение 290. 310 В (для сети
220 В), полученное на выходе сетевого выпрямителя, обеспечивает питание импульсного преобразователя.
Работа преобразователя ИБП в рабочем и дежурном режимах
Ограничение тока выходного ключа Q1
В этих режимах работы ИБП на выв. 8 микросхемы формируется напряжение 5 В и преобразователь работает на фиксированной частоте (приблизительно 58 кГц), которая определяется номиналами деталей времязада-ющей цепи C10 R10. Выработанные микросхемой положительные импульсы с выв. 6 IC1 через резисторы R8 и R7 прикладываются к затвору транзистора Q1 и открывают его. Так как транзистор имеет индуктивную нагрузку (обмотка 3-1 Т1), то его ток будет плавно нарастать, создавая на датчике тока R3A возрастающее положительное напряжение, которое через ограничивающий резистор R4 поступает на выв. 3 (вход C.S) микросхемы. Из функциональной схемы МС IC1 SD3842A (см. рис. 1) видно, что к выв. 3 подключен неинвертирующий вход компаратора датчика тока (CURRENT SENSE COMPARATOR). На инвертирующий вход этого компаратора поступает управляющее напряжение с усилителя ошибки (ERROR AMP). Когда пилообразное напряжение от датчика тока превысит управляющее напряжение ошибки, на выходе компаратора появится уровень лог. «1», который, управляя последующими логическими схемами микросхемы, обеспечит запирание верхнего и отпирание нижнего транзистора тотемного выхода микросхемы. Напряжение на выходе IC1 SD3842A (выв. 6) уменьшится до нуля и выходной ключ Q1 (см. рис. 2) закроется. Описанный выше процесс обеспечивает ограничение тока выходного ключа Q1 в каждый период работы схемы, что предохраняет ключ от токовой перегрузки.
Рис. 2. Принципиальная схема ИБП Billion
Вторичные цепи источника питания
Во вторичных цепях ИБП Billion с помощью импульсных выпрямителей формируются следующие напряжения:
• 12 В, выпрямитель — диод D9 (31DQ10);
• +5 В, выпрямитель — диод D10 (SB540);
• -40 В, выпрямитель — диод D13 (FR107);
• D12 (SR106) — выпрямитель для питания стабилизатора напряжения -5 В.
Причем первые три из этих напряжений обеспечивают питание соответствующих цепей проигрывателя как в дежурном, так и в рабочем режимах.
В рабочем режиме на выв. 10 разъема CON2 поступает сигнал Active с уровнем лог. «1», открывающий через делитель R30 R31 ключевой транзистор Q3. Так как коллектор этого транзистора соединен непосредственно с затвором силового ключа Q2, он также откроется, и напряжение 5 В через этот ключ и дополнительные развязывающие фильтры поступит в цепи питания цифровой и аналоговой частей аппарата. Со стока транзистора Q2 питание поступит также на стабилизатор 3,3 В, который выполнен на микросхеме IC4 (UT587). Необходимое выходное напряжение (3,3 В) этого стабилизатора задается делителем напряжения на резисторах R27 и R28.
Помимо этого напряжение 5 В со стока Q2 поступает на эмиттер p-n-p транзистора Q6. За счет смещения с делителя R35 R36 ключ на транзисторе Q6 открывается и обеспечивает отпирание ключа Q5, что, в свою очередь, обеспечивает работу параметрического стабилизатора напряжения -5 В на транзисторе Q4 и стабилитроне ZD2.
Групповая стабилизация выходных напряжений ИБП
Групповая стабилизация выходных напряжений ИБП осуществляется за счет петли управляющей ООС, в которую входят каскад стабилизации (управляемый стабилитрон) IC3 (KIA431A) и оптрон IC2 (TCET1108G). Анод светодиода оптрона IC2 подключен ко вторичному напряжению 12 В, а катод — к выходу управляемого стабилитрона IC3, т.е. ток через светодиод определяется выходным напряжением стабилитрона IC3.
Таблица 3. Назначение и типы (номиналы) основных элементов ИБП Billion
Позиционные номера | Типы или номиналы | Назначение |
Первичные цепи | ||
D1. D4 | 1N4007 | Сетевой выпрямительный мост |
SP1 | DSP501 | Искровой разрядник цепи защиты ИБП при увеличении напряжения сети |
IC1 | SD3842A (UC3842A) | ШИМ контроллер |
R12 | 10 кОм | Резистор ООС, задает коэффициент усиления напряжения усилителя ошибки |
C11 | 0,01 мкФ | Конденсатор коррекции (ООС по высокой частоте), обеспечивает устойчивую работу усилителя ошибки на ВЧ |
Q1 | SSS6N60A | Выходной ключ импульсного преобразователя ИБП на полевом транзисторе с N-каналом |
R3A | 0,68 Ом 1 Вт | Датчик тока транзистора Q1 |
C12 | 0,01 мкФ 1 кВ |
Предположим, выходные напряжения ИБП растут. Возрастет также напряжение на регулирующем входе стабилитрона IC3, которое поступает туда от источника 5 В через делитель R25 R22 R23. Выходное напряжение IC3 растет, а значит, ток диода оптрона IC2 уменьшается, что приведет к увеличению сопротивления перехода транзистора оптрона и уменьшению постоянного напряжения на выв. 2 микросхемы IC1. Это напряжение усиливается и инвертируется усилителем ошибки внутри микросхемы, что приводит к увеличению напряжения на выходе этого усилителя (выв. 1 на рис. 1). Как уже отмечалось, напряжение ошибки внутри микросхемы поступает на инвертирующий вход компаратора (CURRENT SENSE COMPARATOR), а на неинвертирующий вход этого компаратора поступает пилообразное напряжение от датчика тока. Теперь для запирания силового ключа понадобится несколько большее значение этого напряжения, а это значит, что выходной полевой транзистор Q1 будет открыт большее время. Это приведет к уменьшению скважности импульсов на выходе микросхемы и, следовательно, к уменьшению выходных напряжений ИБП до номинальных значений. Аналогично, но с точностью до «наоборот», работает схема в случае уменьшения выходных напряжений преобразователя БП.
При включении DVD-проигрыва-теля в сеть конденсатор С7 ИБП заряжается от сети через помехоподавля-ющий фильтр и цепь запуска, состоящую из конденсатора С4, диодов D14, D15 и резистора R2. Когда напряжение на конденсаторе С7 и на выв. 7 микросхемы IC1 превысит пороговое значение (16 В), срабатывает схема UVLO микросхемы и напряжение с конденсатора С7 через эту схему поступает как питающее на основные узлы микросхемы. С выв. 8 IC1 опорное напряжение 5 В поступает на времязадающую цепь R10 C10 и на коллектор фототранзистора оптрона IC2. ИБП запускается, в ТПИ Т1 возникают импульсы напряжения, которые с выв. 5 Т1 через дроссель L12 и диод D5 подзаряжают конденсатор C7, и блок питания плавно входит в один из устойчивых режимов работы (рабочий или дежурный).
Причин, по которым может отсутствовать или быть недостаточной подзарядка конденсатора С7, может быть несколько:
• неисправна цепь запуска;
• значительно уменьшилась емкость конденсатора С7;
• не работает или неустойчиво работает сам преобразователь ИБП.
Если по какой-либо причине конденсатор C7 не подзаряжается, напряжение на нем и на выв. 7 IC1 будет уменьшаться. Когда оно упадет до нижнего порогового уровня (10 В), схема UVLO в составе микросхемы IC1 отключит питание ряда узлов этой микросхемы. Исчезнет также напряжение на выв. 8, которым питались времязадающая цепь, фототранзистор оптрона IC2 и ИБП отключится. Его энергопотребление уменьшится до минимального уровня. Конденсатор C7 вновь будет заряжаться через цепь запуска до верхнего порогового напряжения (16 В), т.е. произойдет еще одна попытка запуска. Если причина отсутствия подзарядки конденсатора С7 не исчезла, то попытки запуска будут повторяться. Такой режим работы ИБП называют прерывистым. Он предохраняет ИБП и весь аппарат от возможной перегрузки. Этот режим обычно сопровождается характерным звуком — «цыканьем», которое издает импульсный трансформатор T1.
Схема защиты от перегрузки по напряжению
Основой этой схемы является би-стабильная ячейка на транзисторах разной проводимости Q7 и Q8. Эта схема широко применялась в отечественных телевизорах. Например, в сенсорном устройстве УСУ-15 популярного телевизора 3УСЦТ таких ячеек было восемь. Она имеет два устойчивых состояния: оба транзистора заперты или оба транзистора открыты до насыщения. Кроме того, схема содержит отдельный импульсный выпрямитель на диоде D8 и пороговое устройство на стабилитроне ZD1.
При нормальной работе напряжение на выходе выпрямителя D8 -менее 15 В. Стабилитрон ZD1 и транзисторы ячейки заперты.
Когда напряжения ИБП повышаются выше нормы, напряжение на выходе выпрямителя D8 превысит уровень 15 В, стабилитрон ZD1 открывается и на базу Q8 поступает отпирающее напряжение. Транзистор Q8 открывается, обеспечивая отпирание транзистора Q7. При этом, за счет того что ток коллектора каждого из этих транзисторов является током базы другого транзистора, ячейка будет оставаться в открытом состоянии, шунтируя выв. 1 микросхемы IC1 и блокируя ее работу.
Некоторые неисправности ИБП Billion и рекомендации по его ремонту
1. Если сгорел предохранитель F1, то следует проверить на пробой защитный варистор ZNR1, диоды моста и силовой транзистор Q1. Несколько реже пробивается конденсатор сглаживающего фильтра C5 и конденсаторы помехоподавляющего фильтра. При этом дефекте могут перегореть датчик тока R3A и ограничивающий резистор R55.
2. Тотемный выход микросхемы ШИМ контроллера (выв. 6) обычно выходит из строя по следующим причинам:
• завышено напряжение сети;
• неисправен оптрон IC2;
• неисправен управляемый стабилитрон IC3.
3. ИБП может не запускаться по следующим основным причинам:
• нет напряжения питания 300 В на конденсаторе сглаживающего фильтра C5;
• оборван датчик тока R3A;
• в обрыве элементы цепи запуска: D14, D15, R2, C2. Причем проверить исправность схемы запуска с 90% гарантией можно одним измерением, проверив напряжение 5 В на выв. 8 микросхемы IC1;
• обрыв деталей времязадающей цепи R10 C10;
• потеря емкости или утечка конденсатора C7;
• короткое замыкание во вторичных цепях ИБП;
• пробой одного их транзисторов схемы защиты от перегрузки по напряжению Q7, Q8 или стабилитрона ZD1;
• неисправность силового ключа Q1;
• неисправность микросхемы ШИМ контроллера.
4. ИБП может перейти в прерывистый режим по следующим причинам:
перегрузка по току или короткое замыкание в нагрузках вторичных выпрямителей;
• обрыв элементов D5, L12 или обмотки 5-6 ТПИ Т1;
• обрыв или потеря емкости конденсатора C7.
5. При отсутствии одного или нескольких выходных напряжений блока питания следует проверить коммутирующие ключи, стабилизаторы и выпрямители. Все эти цепи были достаточно подробно рассмотрены выше.
Особенности импульсного блока питания EPM
К сожалению, автору схему этого ИБП найти не удалось. Поэтому сделаем небольшой обзор этого блока по имеющейся информации.
Для обозначения позиционных номеров деталей фирма PHILIPS очень часто использует не привычные для нас буквы (С325, IC501 и т. п.), а только цифры. Точнее, четырехзначные числа. Например: 7101, 2107 и т.д. Подобные обозначения, с непривычки, крайне затрудняют как чтение принципиальных схем, так и поиск деталей на платах.
Давайте расшифруем эти обозначения. Первая цифра слева (старший разряд четырехзначного числа) обозначает тип детали. Хотя есть исключения, но, как правило, используется следующий код 1-й цифры:
• 1 — разъемы (соединители);
• 4 — перемычки (jumpers);
• 5 — индуктивности, трансформаторы;
• 6 — диоды, диодные сборки, мосты, стабилитроны;
• 7 — транзисторы и микросхемы. Следующая, вторая цифра, — это
функциональный узел, к которому этот элемент относится. Здесь система прослеживается сложнее, но для деталей ИБП EPM, которые расположены в первичной цепи, 2-я цифра — 1, а для деталей вторичной цепи — 2.
Третья и четвертая цифры — это номер детали.
Основой ИБП EPM является обрат-ноходовый импульсный преобразователь (инвертор), который собран на ШИМ контроллере 7101 серии TY720xx, выходном высоковольтном МДП транзисторе 7125 и импульсном трансформаторе с позиционным номером 5131. Частота преобразования 125 кГц задается конденсатором 2107, который подключен к выв. 5 микросхемы 7101. Оптопара имеет позиционный номер 7102, а 7201 — это управляемый стабилитрон типа TL431. В качестве датчика тока выходного транзистора используются резисторы 3126, 3127 и 3128. Диоды сетевого выпрямителя имеют номера 6112-6115.
В целом схема и работа этого ИБП напоминает схему и работу ИБП Billion, поэтому методика ремонта этого блока аналогична предыдущему.
1. И. Безверхний. Импульсный блок питания DVD-проигрывателей фирмы SAMSUNG. «Ремонт & Сервис», № 1, 2005 г.
Автор: Игорь Безверхний
Мнения читателей
в схеме не нашел диод д5,и почему то 8я нога шимки соединена на землю
Imran / 30.10.2012 — 01:40
An aswner from an expert! Thanks for contributing.
Андрей / 28.05.2012 — 09:08
Ответьте, пожалуйста, какой средний ток может держать выход +-12в в блоке питания DVD, хочу подцепить усилок.
Андрей / 28.05.2012 — 09:05
Ответьте, пожалуйста, какой средний ток может держать выход +-12в в блоке питания DVD, хочу подцепить усилок.
Владимир / 30.04.2012 — 06:45
Прекрасная информация. Спасибо автору, так держать.
nikolay / 12.03.2012 — 05:19
Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу: