Dysf d12v p1 схема подключения

yourmicrowell.ru

Пусковое реле

Устройство, о котором пойдет речь в этой статье, можно называть по разному: пусковое реле, разгрузочное реле, реле задержки и каждое из этих названий, на мой взгляд, будет правильным. Почему? Это мы выясним позже, а пока остановимся на одном из названий — пусковое реле, и разберемся, для чего оно нужно и как работает.

Из содержания предыдущей статьи, известно, что таймер – регулятор содержит две группы контактов соединенных, между собой последовательно: контакты таймера – K-time и контакты регулятора мощности – K-power. Во время работы микроволновой печи, этим группам приходится коммутировать токи довольно большой мощности – не менее 700Вт. Это ток, приблизительно в 3 ампера при напряжении 220 вольт. А, в печах обладающих функцией гриля, эта цифра будет почти вдвое больше. Коммутация такой большой мощности неизбежно вызывает искрение между контактами в момент их срабатывания, что приводит к выгоранию рабочей поверхности контактной группы и как следствие, отрицательно сказывается на работе печи. Не смотря на заявление изготовителей механических регуляторов о том, что его контакты рассчитаны на довольно большой ток, 10 – 15А. при напряжении 250В. (эти параметры, как правило, указываются на корпусе регулятора) на практике, в печах, не имеющих пускового реле, выход из строя контактов таймера – регулятора встречается горазда чаще, чем в печах оборудованных этим устройством. Сервисные центры, редко утруждают себя ремонтом отдельных узлов и деталей микроволновой печи. По этому, если в вашей микроволновке сгорели контакты таймера – регулятора, в сервисе вам, скорее всего, предложат поменять его целиком, что отрицательно скажется на содержимом вашего кошелька. Для того, чтобы подобные ситуации возникали как можно реже, заводы изготовители стараются разгрузить – обезопасить контакты механического регулятора, оснащая печи такими устройствами, как пусковое реле.

На Рисунке 1, изображена схема микроволновой печи с механической панелью управления. Участок схемы, обведенный красной пунктирной линией, и есть пусковое реле. Основным элементом устройства, является, собственно, реле «Р» с контактами «КР». Данное реле, чаще всего, рассчитано на напряжение срабатывания 24 вольта постоянного тока. Остальные элементы схемы образуют однополупериодный, бес трансформаторный источник питания, обеспечивающий работу реле. На схеме, положение контактных групп ключей блокировки: К1, К2 и К3, соответствуют состоянию открытой двери. Давайте мысленно закроем дверь, то есть переведем положение всех ключей в противоположное состояние – замкнуто. Повернем ручку регулятора времени по часовой стрелке, при этом замкнуться контактные группы таймера – регулятора, K-time и K-power, одним словом, мысленно включим печь – подадим напряжение питания в нагрузку. После срабатывания K-time и K-power, через них потечет ток в нагрузку – первичную обмотку высоковольтного трансформатора. Но, так как контакты «КР» реле «Р», в данный момент еще разомкнуты, то ток потечет через гасящий резистор R2. Благодаря своему номиналу, R2 погасит значительную часть тока и напряжения. Той части мощности, которую он пропустит, не хватит для того, чтобы на вторичных обмотках высоковольтного трансформатора сформировались напряжения необходимые для работы магнетрона. Другими словами, в этот момент, печь у нас не работает. С другой стороны, такое ограничение мощности тока, протекающего через контактные группы K-time и K-power, существенно снижает вероятность искрения между их контактами в момент срабатывания. То есть, коммутируя не полную, а ограниченную с помощью R2 мощность, контактные группы регулятора, как бы разгружаются – работают в щадящем режиме. Одновременно с этим, напряжение питания 220 вольт, через ограничительный резистор R3, поступит на выпрямительный диод VD1. VD1 пропустит только положительные полупериоды переменного напряжения, которые поступят на верхнюю – положительную обкладку конденсатора С4. После подачи постоянного напряжения на конденсатор С4, он начнет заряжаться. Напряжение на его обкладках будет расти. При достижении уровня напряжения на С4 равного напряжению срабатывания реле, реле «Р» сработает, контакты «КР» замкнуться и зашунтируют собой резистор R2. В результате на первичную обмотку высоковольтного трансформатора начнет поступать полная мощность. На вторичных обмотках трансформатора возникнут напряжения необходимые для работы магнетрона, печь запустится. Стабилитрон VD2, в этой схеме, выполняет двойную функцию. При росте напряжения на конденсаторе С4, стабилитрон ограничивает его уровень до необходимого (24В), а при обесточивании реле, гасит обратные токи возникающие в этот момент в катушке реле из – за явления самоиндукции. При размыкании K-power или K-time, напряжение перестает поступать на схему пускового устройства, конденсатор С4 разряжается через обмотку реле, реле «Р» размыкает контакты «КР» и тем самым обесточивает нагрузку. Печь выключается. Таким образом, время зарядки конденсатора С4, создает некую паузу, во время которой контактные группы регулятора коммутируют не полное напряжение, а ограниченное резистором R2, что уменьшает, или совсем исключает искрение между контактами, и тем самым значительно продлевает их срок службы.

Конструктивно, пусковое реле, чаще всего выполняется методом печатного монтажа на одной плате вместе с сетевым фильтром. Внутри печи данный блок, как правило, крепится сверху корпуса вентилятора расположенного у задней стенки микроволновки. Но, возможны и другие варианты расположения, например, над или рядом с высоковольтным трансформатором. На рисунке 2, изображен один из примеров выполнения блока пускового реле и сетевого фильтра. Эту плату можно легко отличить от других электронных блоков печи по наличию резисторов большой мощности в керамических корпусах. На приведенной для примера плате, резистор R2 имеет номинал 30 ом, а R3 – 5,4 ком. Оба резистора рассчитаны на 10Вт. рассеиваемой мощности. Применение таких мощных резисторов, обусловлено тем, что для преобразования сетевого напряжения 220В. в напряжение пригодное для питания реле, нужно погасить значительную часть напряжения и тока. При этом погашенная мощность выделяется резисторами в виде тепла. Для повышения надежности данного устройства, производители могут применять составные резисторы. То есть в место одного резистора 5,4 ком мощностью 10Вт, могут быть установлены два резистора 2,7 ком мощностью по 5Вт каждый включенных последовательно. Так, что не удивляйтесь, если при необходимости ремонта данного узла, вы обнаружите на плате не два резистора, а больше.

Источник

Нужна помощь Не соображу, как подключить 12v реле к WeMos D1

SuperBoss

Member

Что-то ум за разум заходит. Есть сборка механического реле питаемого от 12V. Реле управляется контактом на который достаточно подать напряжение >=5V. У WeMos рабочее напряжение 3.3V. От 3.3V реле не возбуждается и не переключается.

Рекомендуем:  Ваз 21053 подключение магнитолы

Решение, само-собой, пришедшее на умишко: использовать NPN транзистор, дабы при помощи высокого сигнала с пина WeMos на Base через резистор, включить протекание 12V c Collector на Emitter и на управляющий вход реле, там, видимо через свой транзистор он уходит на землю.

Примерно должно выглядеть вот так вот:

На практике использую:
1. Резистор 1 кОм.
2. Транзистор bc547bta.

Но что-то не выходит каменный цветок, как-то не выходит. Получается следующее:

а. Если на Base, через резистор, подаю 12V, то реле включается.
б. Если на Base, через резистор, не подаю 12V, то реле не включается.
в. Если случайно дотрагиваюсь рукой до резистора, подключенного на Base, причем все равно с какой стороны, то реле начинает быстро включаться/выключаться.
г. Если на резистор подаю 3.3V с WeMos, то реле не включается.
в. Если на резистор подаю 5V с WeMos, то реле включается.

Отсюда вопрос: в каком месте я дурак?

PS. Согласно замерам, потребление на 12V управляющего контакта составляет около 1.2 мА.
PSS. Все земли соединены. В схеме применяется 3 преобразователя: 220V->12V, 12V->5V, 5V->3.3V (на WeMos).

Источник

Схемотехника импульсных блоков питания дельта 12 вольт

Импульсные источники питания (ИИП) обычно являются достаточно сложными устройствами, из-за чего начинающие радиолюбители стремятся их избегать. Тем не менее, благодаря распространению специализированных интегральных ШИМ-контроллеров, есть возможность конструировать достаточно простые для понимания и повторения конструкции, обладающие высокими показателями мощности и КПД. Предлагаемый блок питания имеет пиковую мощность около 100 Вт и построен по топологии flyback (обратноходовой преобразователь), а управляющим элементом является микросхема CR6842S (совместимые по выводам аналоги: SG6842J, LD7552 и OB2269).

Внимание! В некоторых случаях для отладки схемы может понадобится осциллограф!

Технические характеристики

Размеры блока: 107х57х30 мм (размеры готового блока с Алиэкспресс, возможны отклонения).
Выходное напряжение: версии на 24 В (3-4 А) и на 12 В (6-8 А).
Мощность: 100 Вт.
Уровень пульсаций: не более 200 мВ.

На Али легко найти множество вариантов готовых блоков по этой схеме, например, по запросам вида «Artillery power supply 24V 3A», «Блок питания XK-2412-24», «Eyewink 24V switching power supply» и тому подобным. На радиолюбительских порталах данную модель уже окрестили «народной», ввиду простоты и надёжности. Схемотехнически варианты 12В и 24В различаются незначительно и имеют идентичную топологию.

Обратите внимание! В данной модели БП у китайцев весьма высок процент брака, поэтому при покупке готового изделия перед включением желательно тщательно проверять целостность и полярность всех элементов. В моём случае, например, диод VD2 имел неверную полряность, из-за чего уже после трёх включений блок сгорел и мне пришлось менять контроллер и ключевой транзистор.

Подробно методология проектирования ИИП вообще, и конкретно этой топологии в частности, тут рассматриваться не будет, ввиду слишком большого объёма информации – см. отдельные статьи.

Далее подробно разберём назначение элементов в схеме.


Импульсный блок питания мощностью 100Вт на контроллере CR6842S.

Назначение элементов входной цепи

Рассматривать схему блока будем слева-направо:

F1 Обычный плавкий предохранитель.
5D-9 Терморезистор, ограничивает бросок тока при включении блока питания в сеть. При комнатной температуре имеет небольшое сопротивление, ограничивающее броски тока, при протекании тока разогревается, что вызывает снижение сопротивления, поэтому в дальнейшем не влияет на работу устройства.
C1 Входной конденсатор, для подавления несимметричной помехи. Ёмкость допустимо немного увеличить, желательно чтобы он был помехоподавляющим конденсатором типа X2 или имел большой (10-20 раз) запас по рабочему напряжению. Для надёжного подавления помех должен иметь низкие ESR И ESL.
L1 Синфазный фильтр, для подавления симметричной помехи. Состоит из двух катушек индуктивности с одинаковым числом витков, намотанных на общем сердечнике и включенных синфазно.
KBP307 Выпрямительный диодный мост.
R5, R9 Цепочка, необходимая для запуска CR6842. Через неё осуществляется первичный заряд конденсатора C4 до 16.5В. Цепь должна обеспечивать ток запуска не менее 30 мкА (максимум, согласно даташиту) во всём диапазоне входных напряжений. Также, в процессе работы посредством этой цепочки осуществляется контроль входного напряжения и компенсация напряжения при котором закрывается ключ – увеличение тока, втекающего в третий пин, вызывает понижение порогового напряжения закрытия ключа.
R10 Времязадающий резистор для ШИМ. Увеличение номинала данного резистора уменьшит частоту переключения. Номинал должен лежать в пределах 16-36 кОм.
C2 Сглаживающий конденсатор.
R3, C7, VD2 Снабберная цепь, защищающая ключевой транзистор от обратных выбросов с первичной обмотки трансформатора. R3 желательно использовать мощностью не менее 1Вт.
C3 Конденсатор, шунтирующий межобмоточную ёмкость. В идеале должен быть Y-типа, либо же должен иметь большой запас (15-20 раз) по рабочему напряжению. Служит для уменьшения помех. Номинал зависит от параметров трансформатора, делать слишком большим нежелательно.
R6, VD1, C4 Данная цепь, запитываясь от вспомогательной обмотки трансформатора образует цепь питания контроллера. Также данная цепь влияет на цикл работы ключа. Работает это следующим образом: для корректной работы напряжение на седьмом выводе контроллера должно находиться в пределах 12.5 – 16.5 В. Напряжение 16.5В на этом выводе является порогом, при котором происходит открытие ключевого транзистора и энергия начинает запасаться в сердечнике трансформатора (в это время микросхема питается от C4). При понижении ниже 12.5В микросхема отключается, таким образом конденсатор C4 должен обеспечивать питание контроллера пока из вспомогательной обмотки не поступает энергии, поэтому его номинала должно быть достаточно чтобы удерживать напряжение выше 12.5В пока ключ открыт. Нижний предел номинала C4 следует рассчитывать исходя из потребления контроллера около 5 мА. От времени заряда данного конденсатора до 16.5В зависит время закрытого ключа и определяется оно током, который может отдать вспомогательная обмотка, при этом ток ограничивается резистором R6. Кроме всего прочего, посредством данной цепи в контроллере предусмотрена защита от перенапряжения в случае выхода из строя цепей обратной связи – при превышении напряжения выше 25В контроллер отключится и не начнёт работать пока питание с седьмого пина не будет снято.
R13 Ограничивает ток заряда затвора ключевого транзистора, а также обеспечивает его плавное открытие.
VD3 Защита затвора транзистора.
R8 Подтяжка затвора к земле, выполняет несколько функций. Например, в случае отключения контроллера и повреждения внутренней подтяжки данный резистор обеспечит быстрый разряд затвора транзистора. Также, при корректной разводке платы обеспечит более короткий путь тока разряда затвора на землю, что должно положительно сказаться на помехозащищённости.
BT1 Ключевой транзистор. Устанавливается на радиатор через изолирующую прокладку.
R7, C6 Цепь служит для сглаживания колебаний напряжения на токоизмерительном резисторе.
R1 Токоизмерительный резистор. Когда напряжение на нём превышает 0.8В контроллер закрывает ключевой транзистор, таким образом регулируется время открытого ключа. Кроме того, как уже говорилось выше, напряжение при котором будет закрыт транзистор также зависит от входного напряжения.
C8 Фильтрующий конденсатор оптопары обратной связи. Допустимо немного увеличить номинал.
PC817 Опторазвязка цепи обратной связи. Если транзистор оптопары закроется это вызовет повышение напряжения на втором выводе контроллера. Если напряжение на втором выводе будет превышать 5.2В дольше 56 мс, это вызовет закрытие ключевого транзистора. Таким образом реализована защита от перегрузки и короткого замыкания.
Рекомендуем:  Как найти папку users на ноутбуке

В данной схеме 5-й вывод контроллера не используется. Однако, согласно даташиту на контроллер, на него можно повесить NTC-термистор, который обеспечит отключение контроллера в случае перегрева. Стабилизированный выходной ток данного вывода – 70 мкА. Напряжение срабатывания температурной защиты 1.05В (защита включится при достижении сопротивления 15 кОм). Рекомендуемый номинал термистора 26 кОм (при 27°C).

Параметры импульсного трансформатора

Поскольку импульсный трансформатор это один из самых сложных в проектировании элементов импульсного блока, расчёт трансформатора для каждой конкретной топологии блока требует отдельной статьи, поэтому подробного описания методологии тут не будет, тем не менее для повторения описываемой конструкции следует указать основные параметры используемого трансформатора.

Следует помнить, что одно из важнейших правил при проектировании – соответствие габаритной мощности трансформатора и выходной мощности блока питания, поэтому первым делом, в любом случае, выбирайте подходящие вашей задаче сердечники.

Чаще всего данная конструкция поставляется с трансформаторами, выполненными на сердечниках типа EE25 или EE16, либо аналогичных. Собрать достаточно информации по количеству витков в данной модели ИИП не удалось, поскольку в разных модификациях, несмотря на схожие схемы, используются различные сердечники.

Увеличение разницы в количестве витков ведёт к уменьшению потерь на переключение ключевого транзистора, но повышает требования к его нагрузочной способности по максимальному напряжению сток-исток (VDS).

Для примера, будем ориентироваться на стандартные сердечники типа EE25 и значение максимальной индукции Bmax = 300 мТ. В этом случае соотношение витков первой-второй-третьей обмотки будет равно 90:15:12.

Следует помнить, что указанное соотношение витков не является оптимальным и возможно потребуется корректировка соотношений по результатам испытаний.

Первичную обмотку следует наматывать проводником не тоньше 0.3мм в диаметре. Вторичную обмотку желательно выполнять сдвоенным проводом диаметром 1мм. Через вспомогательную третью обмотку течёт малый ток, поэтому провода диаметром 0.2мм будет вполне достаточно.

Описание элементов выходной цепи

Далее кратко рассмотрим выходную цепь источника питания. Она, в общем-то, совершенно стандартна, от сотен других отличается минимально. Интересна может быть лишь цепочка обратной связи на TL431, но её мы тут подробно рассматривать не будем, потому что про цепи обратной связи есть отдельная статья.

VD4 Сдвоенный выпрямительный диод. В идеале подбирать с запасом по напряжениютоку и с минимальным падением. Устанавливается на радиатор через изолирующую прокладку.
R2, C12 Снабберная цепь для облегчения режима работы диода. R2 желательно использовать мощностью не менее 1Вт.
C13, L2, C14 Выходной фильтр.
C20 Керамический конденсатор, шунтирующий выходной конденсатор C14 по ВЧ.
R17 Нагрузочный резистор, обеспечивающий нагрузку для холостого хода. Также через него разряжаются выходные конденсаторы в случае запуска и последующего отключения без нагрузки.
R16 Токоограничивающий резистор для светодиода.
C9, R20, R18, R19, TLE431, PC817 Цепь обратной связи на прецизионном источнике питания. Резисторы задают режим работы TLE431, а PC817 обеспечивает гальваническую развязку.

Что можно улучшить

Вышеописанная схема обычно поставляется в готовом виде, но, если собирать схему самому, ничто не мешает немного улучшить конструкцию. Модифицировать можно как входные, так и выходные цепи.

Если в ваших розетках земляной провод имеет соединение с качественной землёй (а не просто ни к чему не подключен, как это часто бывает), можно добавить два дополнительных Y-конденсатора, соединённых каждый со своим сетевым проводом и землёй, между L1 и входным конденсатором C1. Это обеспечит симметрирование потенциалов сетевых проводов относительно корпуса и лучшее подавление синфазной составляющей помехи. Вместе с входным конденсатором два дополнительных конденсатора образуют т.н. «защитный треугольник».

После L1 также стоит добавить ещё один конденсатор X-типа, с той же ёмкостью что у C1.

Для защиты от импульсных бросков напряжения большой амплитуды целесообразно параллельно входу подключать варистор (например 14D471K). Также, если у вас есть земля, для защиты в случае аварии на линии электроснабжения, при которой вместо фазы и нуля фаза попадаётся на оба провода, желательно составить защитный треугольник из таких же варисторов.


Защитный треугольник на варисторах.

При повышении напряжения выше рабочего, варистор снижает своё сопротивление и ток течёт через него. Однако, ввиду относительно низкого быстродействия варисторов, они не способны шунтировать скачки напряжения с быстро нарастающим фронтом, поэтому для дополнительной фильтрации быстрых скачков напряжения желательно параллельно входу подключать также двунаправленный TVS-супрессор (например, 1.5KE400CA).

Опять же, при наличии земляного провода, желательно добавить на выход блока ещё два Y-конденсатора небольшой ёмкости, включенных по схеме «защитного треугольника» параллельно с C14.

Для быстрой разрядки конденсаторов при отключении устройства параллельно входным цепям целесообразно добавить мегаомный резистор.

Каждый электролитический конденсатор желательно зашунтировать по ВЧ керамикой малой ёмкости, расположенной максимально близко к выводам конденсатора.

Ограничительный TVS-диод будет не лишним поставить также и на выход – для защиты нагрузки от возможных перенапряжений в случае проблем с блоком. Для 24В версии подойдёт, например 1.5KE24A.

Автор: Internet. Опубликовано в Источники питания

S-60-12 – AC/DC преобразователь мощностью 60 Вт. Корпус: для монтажа на шасси, серия


Основные технические параметры:

Мощность: 60 Вт;
Количество выходов: 1
U вых: 12 В;
вых A: 0. 5 А;
Механическая подстройка выходного напряжения: ± 10%;
КПД: 76 %;
Уровень пульсаций (размах): 100 мВ;
1 фазное подключение
Входное напряжение : 100. 260 В (Номинальное: 230 В);

Схема AC-DC преобразователя S-60-12 12V- 5A.

C25m C3679 C5609

– Входной сигнал: AC 100-240V/1.1A/50-60Hz
– Выход: 12V/3.16A/55W

Состав: KA3843A , 8N600 , PC817.

SWITCHING ADAPTER
MODEL: WK02-1210
INPUT: 100-240VAC 50/60Hz 0.3А
OUTPUT: 12V — 1.0A

Схема WK02-1210 , D13005K, S8050, nec2501

Программа от STM Electronics для расчёта таких AC/DC преобразователей, практически симулятор , покрутив который становится понятно что и как на что влияет – схема достаточно неприхотлива. «vipersoft.exe»(3.8 MБ)

Большой выбор блоков питания на http://aliexpress.com/

Видео испытание макс. мощности от Rеmоnter

  • Цена: 5,34 USD (брал за 4,81 USD)
  • Перейти в магазин

Привет Муськовчане! Как я обещал в обзоре милливольтметра, хочу рассказать Вам об импульсном блоке питания, с двумя изолированными (друг от друга) напряжениями 5В и 12В. Потребность в таком блоке питания возникает часто, а учитывая небольшие размеры платы, подобный источник питания легко встроить (найти место) в корпус Вашего электронного устройства, самоделки… Давайте протестируем этот ИИП, что бы определится с его «проф. пригодностью».))) Кому интересно — добро пожаловать под Кат… Внимание много фото.

Рекомендуем:  Как включить неизвестные источники на пк

Почему я выбрал такой источник питания?
1. Изолированные друг от друга каналы — часто это очень важно, к примеру, дать питания 12В на плату управления какого-либо силового устройства, а от 5В «запитать» цифровой индикатор (ампервольметр). Если будет гальваническая связь между каналами 5В и 12В, это может привести к неправильной работе, в лучшем случае и большому «бабаху» в худшем…
2. На фото ИИП я увидел, хотя бы какое-то подобие входного фильтра (синфазный дроссель в том числе), для блоков питания нижнего ценового диапазона это редкость, а мне не хочется «гадить» помехами в сеть, т.к в эту же сеть у меня включен осциллограф, который начинает показывать «чужие» помехи при измерении.
3. Небольшой размер — часто бывает, что в ходе сборки появляются дополнительные блоки, которые требуют свое питание, благодаря небольшим размерам найти место для этого ИИП будет не сложно.
Скрин заказа выкладываю под спойлером:

Давайте рассмотрим детали ИИП подробнее. Я буду фонариком выделять те части которые описываю, ибо по другому прочитать маркировку деталей сложно…
1. Высоковольтная часть ИИП
Рассмотрим входной каскад и фильтр. См фото:

Как мы видим на фото, что есть предохранитель, термистор (5D9) и синфазный дроссель. Понятно, что фильтр не полный, не хватает как минимум Х конденсатора, без него возможны помехи в питающую сеть. Попробуем его после тестов впаять куда-нибудь. За дросселем идет электролитический конденсатор на 22мкФ 400В. По «феншую» количество микроФарад на входе равняется количеству Вт выдаваемых блоком питания. Соответственно ИИП рассчитан на 22W. Давайте суммируем заявленную мощность 2-х каналов. 5В 1.2А и 12В 1.2А итого 6W+ 14.4W= 20.4W Таким образом емкости входного конденсатора достаточно.
2. Микросхема -драйвер, широко известная TOP223Y, соответственно это обратноходовый импульсный источник питания.

Зная какая стоит микросхема драйвер, мы можем нарисовать схему импульсного источника питания. Упрощенная схема такая (из даташит), только у нас не один, а два независимых канала на выходе:

Что меня удивило, что микросхема стоит на радиаторе через изолирующую прокладку. Зачем это сделали китайцы вообще не понятно, т.к. сам радиатор не имеет электрического контакта со схемой. Понятно, что с прокладкой охлаждение будет хуже. И по хорошему эту прокладку нужно убрать, и посадить микросхему на термопасту. Давайте также проверим соответствие мощности микросхемы-драйвера, мощности самого блока питания. См таблицу из даташит:

Как видим, при универсальном питании наша микросхема дает мощность до 30W, что соответствует мощности ИИП. Тут все нормально.
3. На фото мы видим клампер первичной обмотки импульсного трансформатора и элементы «самопитания» микросхемы драйвера

Клампер выполнен по классической схеме RCD и особенностей не имеет. Диод D2, электролит С3 и резистор R2 это элементы «самопитания» микросхемы TOP.
4. Элементы обратной связи, трансформатор и два Y конденсатора мы видим на следующем фото

Опять же это классика обратноходовых ИИП. В качестве управляемого стабилитрона использована микросхема TL431, гальваническая развязка осуществляется оптотроном 817 серии. За импульсным трансформатором мы видим два Y конденсатора, которые существенно снижают помехи и соединяют «горячую» и «холодные» земли…
5. Выходной каскад представлен диодами на каждый канал, затем выпрямительные конденсаторы и LC фильтры, которые снижает уровень выходных помех. Китайцы не поставили снаббры на диоды и керамику на ножки электролитических конденсаторов, которые могут заметно удлинить «жизнь» электролитов. Но не сложно поставить эти керамические конденсаторы самостоятельно…


Поглядим так же обратную сторону платы источника питания:

Мы видим диодный мост на входе и видим что китайцы сделали технологическую прорезь под импульсным трансформатором, однако толку он нее мало, т.к под Y конденсаторами есть место, где дорожки «горячей» и «холодной» части проходят довольно близко друг от друга.

В общем, исполнение данного ИИП я могу оценить на Три с плюсом (3+) по Советской пятибалльной школьной системе)))
Поставим плату ИИП на латунные втулки и подпаяем входные провода. Даем напряжение осветительной сети. На плате ИИП загорелся красный светодиод сигнализирующий, что на выходе есть напряжение.

Тут мы видим первые странности. Обратите внимания на выходные контакты. Зачем то там китайцы поставили 3 плюса (+), видать что бы запутать пользователя и дезориентировать))))
Зачем это сделано непонятно, тем более что плюсы нарисованы у катода, а не анода… Потому проверяйте полярность мультиметром. Если смотреть на выходные контакты Минус слева, а Плюс справа.

Проверяем напряжение на выходах без нагрузки. Напряжение в норме (соответствует)


Ниже на осциллограмме вы можете увидеть помехи на стабилизированном 5В выходе ИИП без нагрузки на выходе. Как мне кажется помехи в пределах допустимого.

Теперь даем нагрузку 1А на выход 5В См фото…

На осциллографе уже не такая идиллия:

Однако напряжение просело совсем немного всего на 7мВ… Одноамперную нагрузку ИИП держит нормально…
Странность №2 На фото видно, что выпрямительные диоды стоящие после импульсного трансформатора в каналах 5В и 12В разные (хотя 1А способны выдержать оба диода)… Потому у меня возникло подозрение, что ток в 12 вольтовом канале вряд ли будет как заявлен в описании на сайте Banggood…

Догадка мгновенно подтвердилась, когда я начал испытания 12 вольтового канала. См фотографию: (подозрения не подтвердились, что бы не было просадки в 12В канале, нужно нагрузить 5В стабилизированный канал)

Уже при токе чуть выше 300мА просадка напряжения на выходе составило более 1 вольта. Чего уж там говорить про заявленный 1 Ампер… Пульсации тоже явно выше заявленных на сайте Banggood… Проблема, как я думаю, в импульсном трансформаторе, судя по его размеру, 20Вт снять с него довольно сложно… Но менять и перематывать трансформатор, ради того, что бы добиться заявленных продавцом значений, я не буду…
Более серьезно протестировать этот блок питания смогу, после того как мне приедет купленная электронная нагрузка…

Но она еще в дороге…

Выводы: Данный ИИП подходит для нетребовательных к чистоте питания, низкотоковых потребителей, таких как различные панельные ампервольметры, зарядные устройства и другие самоделки.

Да я был не прав, прошу прощения у Banggood… Если нагрузить стабилизированный 5 вольтовый канал (благодаря подсказке Aloha_), то просадка в 12В канале не наблюдается… См фото…


Данный Импульсный блок питания по току соответствует приведенным на сайте параметрам.

UPD: Допилинг, доставил конденсатор на вход, пусть не формата Х, но рассчитанный на 630В, емкость небольшая, ну хоть для самоуспокоения, что на входе что-то есть…

Так же впаял 4 керамических смд конденсатора 100n на ножки электролитов, думаю, что лишними не будут…

После того как приедет нагрузка, еще раз протестирую этот ИИП и добавлю обзор.

Источник

Adblock
detector