Датчик оксида азота arduino

Датчик азота в почве ардуино

Обзор емкостного датчика почвы v2.0

Автор: Сергей · Опубликовано 21.11.2020 · Обновлено 16.12.2020

Сегодня расскажу как подключить емкостный датчик влажности почвы к плате Arduino UNO с отправкой показаний на сериал порт. Так-же приведу пример калибровки, для вывода показаний в процентах %.

Технические параметры

► Напряжение питания: 3.3 — 5.5 В;
► Рабочий ток: 5mA
► Габариты: 99 х 16 х 10 мм;
► Выходное напряжение: 0 — 3.0 В
► Вес: 1 г

Общие сведения

Данный датчик, измеряет уровень влажности почвы посредством емкостного измерения, а не резистивного, как другие датчики. Это позволило увеличить срок службы датчика, так как он не подвержен коррозии. Так же, модуль включает в себя встроенный стабилизатор напряжения, с помощью которого обеспечивается диапазон работы от 3.3 В до 5.5 В, что позволяет подключить его к Arduino UNO, а так же к NodeMCU.

Выходное напряжение ёмкостного датчика почвы составляет от 1.2 В до 3.0 В. Принципиальную схему датчика можно посмотреть на рисунке ниже.

Назначение контактов модуля NEO-6M:
Емкостного датчика почвы v.2 имеет один разъем (PH2.0-3P) для подключения.
GND — заземляющий вывод питания;
VCC — вывод питания 3.3 В — 5 В.
AUOT — аналоговый выход до 3В.

Подключение емкостного датчика почвы v.2 к Arduino UNO

Необходимые детали:
► Arduino UNO R3 x 1 шт.
► Емкостной датчик почвы v.2 x 1 шт.
► Провод DuPont, 2,54 мм, 20 см, F-M (Female — Male) x 1 шт.
► Кабель USB 2.0 A-B x 1 шт.

В данном примере подключим емкостной датчика почвы v.2 к Arduino UNO и отобразим аналоговое значение и значение влажности почвы в процентах.

Подключение:
Теперь приступим к подключению емкостной датчик почвы к Arduino UNO, схема для этого очень проста. Подключим вывод VCC к 3.3 В (Arduino UNO, а GND к GND (Arduino UNO). Точно так же подключаем вывод аналогового выхода к A0 (Arduino UNO).

Программа:
Скопируйте приведенный ниже скетч и загрузите его на свою плату Arduino.

Как работает датчик влажности почвы, и его взаимодействие с Arduino

Когда вы слышите термин «умный сад», вам приходит в голову система, которая измеряет влажность почвы и автоматически поливает ваши растения.

С этим типом системы вы можете поливать растения только при необходимости и избегать чрезмерного или недостаточного полива.

Если вы хотите построить такую систему, вам обязательно понадобится датчик влажности почвы.

Как работает датчик влажности почвы, и его взаимодействие с Arduino

Как работает датчик влажности почвы?

Работа датчика влажности почвы довольно проста.

Вилка в форме зонда с двумя открытыми проводниками действует как переменный резистор (потенциометр), сопротивление которого изменяется в зависимости от содержания воды в почве.

Рисунок 1 – Работа датчика влажности почвы

Это сопротивление обратно пропорционально влажности почвы:

  • большее количество воды в почве означает лучшую проводимость и приводит к снижению сопротивления;
  • меньшее количество воды в почве означает худшую проводимость и приводит к повышению сопротивления.

Датчик выдает выходное напряжение в соответствии с сопротивлением, измеряя которое мы можем определить уровень влажности.

Обзор аппаратного обеспечения

Типовой датчик влажности почвы состоит из двух компонентов.

Датчик содержит вилочный зонд с двумя открытыми проводниками, который погружается в почву или в любое другое место, где должно измеряться содержание воды.

Как сказано выше, он действует как переменный резистор, сопротивление которого изменяется в зависимости от влажности почвы.

Рисунок 2 – Зонд датчика влажности почвы

Модуль

Датчик также содержит электронный модуль, который соединяет датчик с Arduino.

В соответствии с сопротивлением датчика модуль выдает выходное напряжение, которое доступно на выводе аналогового выхода (AO).

Этот же сигнал подается на высокоточный компаратор LM393 для его оцифровки, с выхода которого сигнал подается на вывод цифрового выхода (DO).

Рисунок 3 – Регулировка чувствительности датчика влажности почвы

Для регулировки чувствительности цифрового выхода (DO) модуль содержит встроенный потенциометр.

С помощью этого потенциометра вы можете установить пороговое значение; таким образом, когда уровень влажности превысит пороговое значение, модуль выдаст низкий логический уровень, в остальных случаях на цифровой выход будет подаваться высокий логический уровень.

Эта настройка очень полезна, когда вы хотите инициировать действие при достижении определенного порога. Например, когда уровень влажности в почве пересекает пороговое значение, вы можете активировать реле, чтобы начать перекачивание воды. Вот вам идея!

Совет: поверните движок потенциометра по часовой стрелке, чтобы увеличить чувствительность, или против часовой стрелки, чтобы уменьшить ее.

Рисунок 4 – Светодиодные индикаторы питания и состояния почвы

Помимо этого, модуль имеет два светодиода. Индикатор питания загорится, когда на модуль будет подано напряжение питания. Светодиод состояния загорится, когда на цифровой выход будет подаваться низкий логический уровень.

Распиновка датчика влажности почвы

Датчик влажности почвы очень прост в использовании и содержит только 4 вывода для связи с внешним миром.

Рисунок 5 – Распиновка датчика влажности почвы

AO (аналоговый выход) выдает аналоговый сигнал с напряжением в диапазоне между напряжением питания и 0 В и будет подключен к одному из аналоговых входов нашей платы Arduino.

Вывод DO (цифровой выход) выдает цифровой выходной сигнал со схемы встроенного компаратора. Вы можете подключить его к любому цифровому выводу на Arduino или напрямую к 5-вольтовому реле или подобному устройству.

Вывод VCC подает питание на датчик. Рекомендуется питать датчик напряжением от 3,3 до 5 В. Обратите внимание, что сигнал на аналоговом выходе будет зависеть от того, какое напряжение питания подается на датчик.

Источник

Детектор загрязнения окружающего воздуха

Данное устройство предоставит пользователям экономичное решение для контроля качества воздуха. Организации по защите окружающей среды определили пять основных загрязнителей атмосферы: озон, твердые частицы в воздухе, оксид углерода, диоксид серы и оксид азота. Данное устройство может детектировать все эти загрязняющие вещества, кроме диоксида серы. Кроме того, устройство включает детектор бытового газа, что позволит предупреждать пользователей об утечке газа или присутствия горючих газов. Также в комплект входит датчик температуры и влажности.

Мы откалибровали устройство согласно даташитов датчиков для предварительной оценки качества работы устройства в целом. Так как используемые датчики достаточно дешевые и их параметры значительно колеблются от компонента к компоненту, их калибровка выполнялась при заранее известной концентрации вредных газов.

Шаг 1: Материалы

Управление и питание

  • Микроконтроллер Arduino Uno
  • Источник питания напряжением 5В
  • RGB 16×2 LCD шилд

Датчики

  • Датчик твердых частиц Shinyei PPD42
  • Газовый датчик MQ-2
  • Газовый датчик MQ-9
  • Газовый датчик MiCS-2714 (NO2)
  • Газовый датчик MiSC-2614 (Озон)
  • Датчик температуры и влажности Keyes DHT11

Дополнительные материалы для сборки

  • Доступ к 3D принтеру
  • Макетная плата
  • 5В вентилятор
  • 10 — 15 проводников калибра 24 (0.511 мм)

Шаг 2: Общая электрическая схема

Вышеуказанная электрическая схема представляет собой общую схему, демонстрирующую работу детектора вредных газов. Подробная электрическая схема для макетной платы будет представлена ниже. Примите во внимание, что вы можете изменить большинство цифровых и аналоговых портов, к которым подключаются датчики, если это будет необходимо (по любой причине); для этого следует внести изменения в предоставленный код программы.

Шаг 3: Датчик твердых частиц

Для сбора данных о концентрации твердых частиц в воздухе мы использовали два пылевых датчика Shinyei PPD42.

Каждый датчик Shinyei имеет два сигнальных выхода: один для мелких твердых частиц (левый желтый провод на изображении выше) и один для больших твердых частиц. Эти выходы подсоединены к цифровым входам Ardiuno. Для портов датчика требуется напряжение питания +5В и земля. Смотрите общую электрическую схему.

Каждый датчик использует инфракрасный светодиод и фотодиод для измерения концентрации рассеянных в воздухе твердых частиц. Внутренняя схема преобразует выходной сигнал фотодиода в цифровые сигналы. Обычно на выходе датчика сигнал +5В, а когда датчик обнаруживает частицы, он посылает низковольтный импульс. Период времени, когда на выходе низкий сигнал или «low-pulse occupancy percentage» (процент времени, в течение которого на выходе фотодиода низкий уровень напряжения) пропорционален концентрации твердых частиц в воздухе.

Подробный анализ обратного декодирования датчика Shinyei PPD42 указан в учебном материале Трейси Аллена

Шаг 4: Печатная плата газового датчика

Выше показана электрическая схема для печатной платы газовых датчиков и датчика температуры/влажности. Подробные сведения об установке каждого компонента указаны ниже в следующих шагах. Заметьте, что ваша печатная плата может отличаться физически от указанной на изображении. Фактически, рекомендуется самостоятельно изготовить печатную плату для компонентов с поверхностным монтажом, вместо использования макетной платы.

Шаг 5: Датчики озона и NO2

Мы использовали датчики с поверхностным монтажом MiCS-2614 и MiCS-2714, которые могут обнаруживать в воздухе озон и двуокись азота соответственно.

Оба этих датчика используют внутренний резистор в своем сенсорном элементе. На схеме выше измерительный резистор расположен между выводами (G) и (K). Используйте омметр для того, чтобы убедиться в правильном расположении выводов. Сопротивление резистора должно находиться в пределах 10-20 kΩ.

Кроме того оба датчика оснащены нагревательным элементом между выводами (A) и (H). Данный нагревательный элемент поддерживает требуемую температуру сенсорного элемента. Сопротивление нагревательного элемента составляет 50-60Ω.

В идеальном случае оба датчика необходимо установить поверхностно на печатной плате. Однако при отсутствии печатной платы следует аккуратно подпаиваться к выходам этих датчиков, используя низкотемпературный припой и проявлять особую осторожность.

Как показано на электрической схеме для макетной платы, мы установили резисторы номиналом 82Ω и 131Ω последовательно с нагревательными элементами датчиков MiCS-2614 и MiCS-2714 соответственно. Это гарантирует, что нагревательные элементы получат необходимый уровень мощности. Если у вас нет резистора номиналом 131Ω (это нестандартное значение), тогда используйте резисторы на 120Ω и 12Ω, подключенные последовательно.

Мы разместили измерительные резисторы в обоих датчиках последовательно с резисторами 22kΩ с целью создания делителя напряжения. По напряжению на выходе делителя напряжения мы смогли вычислить измерительное сопротивление датчика.

Rsenor = 22kΩ * (5В / Ввых — 1)

Шаг 6: Датчики токсичного газа MQ

Для измерения токсичных газов, включая пропан, бутан, сжиженный попутный газ и оксид углерода, мы использовали газовые датчики MQ-2 и MQ-9.

MQ-2 и MQ-9 очень похожи на датчики MiCS. Они используют газочувствительный резистор (SnO2) для детектирования концентраций токсичных газов и имеют нагревательный элемент для поддержания требуемой температуры датчика. Схемы, используемые для этих датчиков, аналогичны схемам для датчиков MiCS, за исключением того, что мы использовали транзистор вместо резистора для регулировки нагревательной мощности в MQ-9.

Для получения подробных сведений касательно монтажа обратитесь к электрической схеме для макетной платы. Для датчика MQ-2, подсоедините вывод с меткой A к 5В питания, вывод с меткой G к земле, а вывод с меткой S подсоедините к земле через резистор 47 kΩ. Для газового датчика MQ-9, подсоедините вывод с меткой A к транзистору, вывод с меткой B к 5В питания, вывод с меткой G к земле, а вывод с меткой S подсоедините к земле через резистор 10 kΩ.

Шаг 7: Датчик температуры и влажности

Данный датчик нужно обязательно использовать, поскольку контроль температуры и влажности играет важную роль в определении концентрации газов. Высокая влажность и температура значительно влияют на точность измерений. Поэтому очень важно контролировать эти изменяющиеся параметры. Температуру и влажность можно одновременно контролировать с помощью одного датчика. Согласно изображению выше, левый вывод присоединяют к питанию, средний вывод – сигнальный выход, а правый к земле. Выходной сигнал от данного датчика поступает на цифровой порт Arduino. В нашем коде предполагается, что температурный сигнал поступает на цифровой порт 2. При необходимости можно поменять на другой цифровой порт; просто в код программы следует внести соответствующие коррекции в зависимости от выбранного порта. Для надлежащего использования данного компонента обратитесь к электрической схеме для макетной платы.

Шаг 8: Источник питания и вентилятор

Если вы обратите внимание на электрическую схему для всего проекта, то увидите, что вам необходимо только одно входное напряжение величиной 5В. Для данного проекта можно использовать обычный сетевой адаптер, показанный выше. Кроме того, вам потребуется корпусной вентилятор, который поможет предотвратить перегрев устройства. Можно использовать стандартный 5В вентилятор требуемого размера.

Шаг 9: Корпус

Корпус можно изготовить многими способами. Мы использовали UP 3D принтер. Мы приложили STL файл, который использовали для окончательной печати.

Шаг 10: Код программы

Код для извлечения исходных данных из устройства прикреплен выше. Данный код распечатывает на компьютере через последовательный монитор значения сопротивления датчика, процент занятости низко импульсных сигналов Shinyei PPD42 и показания температуры и влажности. Также исходные данные можно просмотреть на LCD дисплее.

Для правильной работы кода сначала необходимо загрузить библиотеки для LCD шилда, и датчиков температуры и влажности. Библиотеки можно найти на следующих веб-сайтах:

Шаг 11: Интерпретация данных

Для определения концентрации твердых частиц мы использовали научную статью Дэвида Холстиуса (David Holstius). В статье для пылевого датчика Shinyei PPD42 были определены соотношения выходов датчика и измерений, проведенных Управлением по охране окружающей среды. Диаграммы в приложении указывают наиболее подходящие графики для данных. Мы использовали графики для выполнения аппроксимации концентрации твердых частиц PM2.5 в микрограммах на метр кубический следующим образом:

PM2.5 = 5 + 5 * (небольшой процент времени, в течение которого на выходе фотодиода низкий уровень напряжения).

Для оценки концентрации газа от газовых датчиков MiCS, мы использовали графики в даташитах (NO2 и O3) для извлечения функций, касающихся сопротивления датчика по отношению к концентрации газа.

Для датчиков MQ мы использовали графики из даташитов датчиков для качественной оценки данных. Когда значение сопротивления падает ниже половины сопротивления в воздухе, то вероятно, что датчик обнаруживает целевые газы. Когда сопротивление падает на коэффициент 10, уровни целевого газа будут в районе 1000 промилле, то есть близко к требуемому безопасному пределу.

Источник

Adblock
detector