Датчик механического давления ардуино

Подключение датчика давления HX710B к Arduino

Автор: Сергей · Опубликовано 03.09.2022 · Обновлено 01.09.2022

На сайте уже есть несколько статьей про датчики давления, BME280 и BMP180. В этой статье расскажу, еще об одном датчик давления для Arduino, собранном на датчике MPS20N0040D и аналого-цифровом преобразователе HX710B. Модуль способен измерять давление воздуха от 0 до 40 кПа.

Технические параметры:

► Напряжение питания: 3.3 В — 5 В;
► Основные функции интегральных: MPS20N0040D-D и HX710B;
► Выход тип: цифровой;
► Диапазон измерения: 0 — 40 кпа;
► Размеры: 19 x 19 x 12 мм;
► Вес: 3 грамма.

Общие сведенья

Основан модуль на небольшом датчке давления MPS20N0040D имеющим всего 6 вводов. Датчик собран на основе тензодатчика, который прикреплен к диафрагме и при любом изменении давлении происходит изменение электрического сопротивления.

По схеме выше можно понять, что датчик MPS20N0040D собран по мосту Уитстона.
Чуть ниже, установлена микросхема HX710B, которая представляет собой 24-битный аналого-цифровой преобразователь (АЦП). По сути, данный модуль представляет собой тензодатчик и усилитель, о котором рассказывал раньше, в этой статье.

Назначение контактов:
VIN, GND — Вывод источник питания;
SCK — Тактовый вывод;
OUT — Цифровой вывод.

Подключение датчика давления HX710B к Arduino

Необходимые детали:
► Контроллер Arduino UNO R3 x 1 шт.
► Провода DuPont, 2,54 мм, 20 см x 1 шт.
► Барометрический датчик давления 0-40 кПа HX710B x 1 шт.

Описание:
В примере покажу как подключить датчика давления HX710B к Arduino, все показания будем передавать в последовательный порт.

Подключение:
Из приведенной ниже принципиальной схемы можно увидеть, что мы используем всего четыре провода. Сначала подключаем вывода SCK и OUT к выводам D3 и D2, затем подключаем к VCC и GND к 5 В и GND.

Установка библиотеки:
Для работы датчиком HX710B необходимо установить библиотеку, для этого заходим на сайт скачиваем библиотеку и устанавливаем в среду разработки IDE (так же можно скачать в конце статьи)

Программа:
Схема и библиотека установлена, можно приступить к программой части. Открываем среду разработки Arduino IDE и копируем скетч ниже и загружаем его в Arduino UNO

Источник

Ардуино: датчик давления BMP180 (BMP085)

Барометр — это устройство, которое измеряет атмосферное давление. То есть давление воздуха, который давит на нас со всех сторон. Еще со школы мы знаем, что первый барометр представлял собой тарелку с ртутью, и перевернутой пробиркой в ней. Автором этого устройства был Эванджели́ста Торриче́лли — итальянский физик и математик. Снять показания ртутного барометра можно так же просто, как и показания спиртового термометра: чем давление снаружи колбы больше, тем выше столбик ртути внутри неё. Пары ртути, как известно, весьма ядовиты.

Позже, появился более безопасный прибор — барометр-анероид. В этом барометре ртуть была заменена на гофрированную коробку из тонкой жести, в которой создано разрежение. Под воздействием атмосферы, коробочка сжимается и через систему рычагов поворачивает стрелку на циферблате. Вот так выглядят эти два барометра. Слева — анероид, справа — барометр Торричелли.

Зачем нам может понадобиться барометр? Чаще всего, этот прибор используют на летательных аппаратах для определения высоты полета. Чем выше аппарат поднимается над уровнем моря, тем меньшее давление испытывает бортовой барометр. Зная эту зависимость, легко определить высоту.

Другой распространенный вариант использования — самодельная погодная станция. В этом случае мы можем использовать известные зависимости грядущей погоды от атмосферного давления. Помимо барометра, на такие станции ставят датчики влажности и температуры.

Электронный барометр

Такие громоздкие барометры мы не сможем использовать в робототехнике. Нам нужен миниатюрный и энергоэффективный прибор, который легко подключается к той же Ардуино Уно. Большинство современных барометров делают по технологии МЭМС, так же как и гиротахометры с акселерометрами. МЭМС барометры основаны на пьезорезистивном, либо на тензометрическом методе, в которых используется эффект изменения сопротивления материала под действием деформирующих сил.

Если открыть корпус МЭМС барометра, можно увидеть чувствительный элемент (справа), который находится прямо под отверстием в защитном корпусе прибора, и плату управления (слева), которая осуществляет первичную фильтрацию и преобразование измерений.

Датчики BMP085 и BMP180

К самым доступным датчикам давления, которые часто используются полетных контроллерах и в разного рода самодельных электронных устройствах, можно отнести датчики компании BOSH: BMP085 и BMP180. Второй барометр более новый, но полностью совместимый со старой версией.

Немного важных характеристик BMP180:

  • диапазон измеряемых значений: от 300 гПа до 1100 гПа (от -500м от +9000м над уровнем моря);
  • напряжение питания: от 3.3 до 5 Вольт;
    сила тока: 5 мкА при скорости опроса — 1 Герц;
  • уровень шума: 0.06 гПа (0.5м) в грубом режиме (ultra low power mode) и 0.02 гПа (0.17м) а режиме максимального разрешения (advanced resolution mode).

Теперь подключим этот датчик к контроллеру, и попробуем оценить атмосферное давление.

Подключение BMP180

Оба датчика имеют I2C интерфейс, так что их без проблем можно подключить к любой платформе из семейства Ардуино. Вот как выглядит таблица подключения к Ардуино Уно.

BMP 180 GND VCC SDA SCL
Ардуино Уно GND +5V A4 A5

Принципиальная схема

Внешний вид макета

Программа

Для работы с датчиком нам понадобится библиотека: BMP180_Breakout_Arduino_Library

Скачиваем её из репозитория, и устанавливаем в Arduino IDE. Теперь все готово для написания первой программы. Попробуем получить сырые данные из датчика, и вывести их в монитор COM порта.

Процедура получения заветного давления из датчика не такая тривиальная, и состоит из нескольких этапов. В упрощенном виде алгоритм выглядит так:

  1. запрашиваем у барометра показания встроенного датчика температуры;
  2. ждем время A, пока датчик оценивает температуру;
  3. получаем температуру;
  4. запрашиваем у барометра давление;
  5. ждем время B, пока датчик оценивает давление;
  6. получаем значение давления;
  7. возвращаем значение давления из функции.

Время B зависит от точности измерений, которая задается в функции startPressure. Единственный аргумент этой функции может принимать значения от 0 до 3, где 0 — самая грубая и самая быстрая оценка, 3 — самая точная оценка давления.

Загружаем программу на Ардуино Уно, и наблюдаем поток измерений атмосферного давления. Попробуем поднять датчик над головой, и опустить до уровня пола. Показания будут немного меняться. Осталось только разобраться, как нам преобразовать эти непонятные числа в высоту над уровнем моря.

Преобразование давления в высоту над уровнем моря

Датчик BMP180 возвращает величину давления в гектопаскалях (гПа). Именно в этих единицах принято измерять атмосферное давление. 1 гПа = 100 Паскалей. Известно, что на уровне моря давление в среднем составляет 1013 гПа, и каждый дополнительный метр над уровнем моря будет уменьшать это давление всего на 0.11 гПа (примерно).

Таким образом, если мы вычтем из результата функции getPressure число 1013, и разделим оставшуюся разность на 0.11, то мы получим значение высоты над уровнем моря в метрах. Вот так изменится наша программа:

В действительности, давление зависит от высоты над уровнем моря нелинейно, и наша формула годится лишь для высот на которых мы с вами обычно живем. Благо, человечеству известная более точная зависимость давления от высоты, которую мы можем применить для получения более точных результатов.

Здесь p — измеренное в данной точке давление, p0 — давление относительно которого идет отсчет высоты.

В библиотеке SFE_BMP180 уже есть функция, которая использует указанную. формулу для получения точной высоты. Используем её в нашей программе.

Я не стал полностью копировать функцию getPressure, чтобы сохранить читабельность текста.

В программе появилась еще одна переменная P0 — это давление, которое мы измерим на старте программы. В случае летательного аппарата, P0 будет давлением на взлетной площадке, относительно которой мы начнем набор высоты.

Визуализация

Теперь попробуем отобразить показания давления в программе SFMonitor, и посмотрим как меняется давление при движении датчика на высоту 2 метра.

В результате работы программы получим график давления в Паскалях:

Заключение

Как мы уяснили из урока, определение высоты над уровнем моря не такая тривиальная задача. Мало того, что давление зависит от высоты нелинейно, так еще картину портят различные внешние факторы. Например, давление у нас дома постоянно меняется с течением времени. Даже за несколько минут, высота измеренная нашим прибором может варьироваться в диапазоне 0.5 — 1 метра. Температура так же сильно влияет на качество измерений, поэтому нам приходится учитывать её при расчете давления.

Для летательных аппаратов рекомендуется использовать датчики повышенной точности, такие как MS5611. У этого барометра точность измерений может достигать 0,012 гПа, что в 5 раз лучше, чем у BMP180. Также, для уточнения барометрической высоты полета применяют координаты GPS.

Источник

Как подключить датчик давления к Ардуино

Конец двадцатого века был временем взрывного роста технологий, которое выразилось не сколько разработкой новых устройств, а скорее расширением возможностей привычных механизмов. Примером тут может служить обыденный выключатель света. Если раньше все его функции состояли в подаче тока и прекращению хода электричества к устройствам потребления, — теперь он может сообщать в конгломерат домашней техники, работающей в единой сети, о своем статусе, или менять состояние по удаленным командам.

Расширение функционала стало доступным за счет широкого использования микроконтроллеров. В своей основе — они представляют собой миниатюрные компьютеры, ориентированные на управление внешними устройствами в рамках своей программы и происходящих вокруг факторов. Информацию о последних логический модуль получает за счет специализированных датчиков.

Существует не так много моделей микроконтроллеров, служащих базой «умной» техники. Среди них определенной популярностью пользуется Arduino, в качестве достаточно универсальной основы создания интеллектуального оборудования. Своей известности микроконтроллер обязан не только быстродействием или удобством подключения внешних компонентов, но и широтой их моделей, представленной на рынке. Среди последних, богатый выбор сенсоров, устройств индикации, средств интерфейса и получения команд, сетевых и коммуникационных плат, а также управляющих внешней аппаратурой узлов.

Собственно, чувствительные элементы платформы и будут рассмотрены в теле статьи, а конкретно один из них — датчик давления Ардуино.

Что измеряет сенсор

Давление — некая физическая величина численно равная перпендикулярно направленной силе действующей на единицу площади поверхности. Сам датчик можно представить своеобразными очень чувствительными весами. Последнее замечание сделано по причине того, что и вода, и газы тоже имеют свою массу, которая влияет на поверхность под ними. На практике, за счет указанного фактора, можно определить глубину погружения (чем ниже, тем больше вес слоя воды) или высоту подъема в атмосферу (чем выше — тем меньше плотность, а значит и слабее воздействие). Кроме того, в отношении давления воздуха не стоит забывать о погодных колебаниях. Резкое падение названой характеристики атмосферы — к дождю или буре.

Опять же, насчет газов и частично жидкостей. Их можно сжимать. Но, уплотненные вещества будут стремиться вернуться в первоначальное состояние. И чем сильнее компрессия, тем мощнее будет конечное давление газа или жидкости внутри сосуда их содержащего.

Собственно, детектор Ардуино о котором идет речь, и измеряет силу воздействия на единицу площади сенсорного элемента прибора. Правда, в большинстве выпускаемых моделей, описанное — не все их функциональные возможности. Бонусом, у многих идет замер температуры окружающей среды, а у некоторых еще и влажности или ускорения.

Устройство

Суммарное количество чувствительных элементов датчика давления зависит от его модели. Главными остается пьезоэлементы, определяющие саму силу действия на свою плоскость. Физическая основа работы – возникновение электрического тока на внутренних кварцевых пластинах в результате их деформации при соприкосновении с влияющим фактором. В настоящем случае, о котором идет речь — газом или жидкостью.

Выработанное аналоговое напряжение идет в модуль АЦП преобразования, где его сила перекодируется в числовой вид и через интерфейсы датчика I2C и SPI отправляется на микроконтроллер. Библиотека функций, ориентированных на работу с конкретным сенсором, переводит полученные величины в понятный человеком вид, на основе единиц измерений давления в стандарте Си — Паскалях.

Все дополнительные измеряющие элементы конкретного устройства действуют похожим образом, конвертируя с помощью АЦП аналоговые значения в цифру, для последующей отправки их в Arduino.

Представленные на рынке модели

Датчики Arduino, относящиеся к давлению, делятся согласно средам применения и конструктивным особенностям, непосредственно связанным с получением конечного результата. Есть модели, защищенные от влаги и предназначенные для применения в жидкостях, другие работают только в качестве анероидов атмосферы, иные устанавливаются в разрыв движения потока, четвертые в качестве определителей внутреннего давления наполняющего емкость газа. Их всех объединяет наличие общих интерфейсов подключения к микроконтроллеру и низкое, не более нескольких милливатт (реже Ватт), потребление энергии.

Наименование Питание (V) Точность Разрешение
(hPa)
Диапазон (hPa) Рабочая температура
(°C)
Интерфейсы Примечание
SPI I2C UEXT
Атмосферные
MOD-BMP085 1.8–3.6 0.03 hPa 0.01 300–1100 (от 500 м ниже уровня моря до 9 км. высоты –40..+85 + + Измерение температуры
GY-BMP280 3.3 0.12 hPa 0.0016 300–1100 –40..+85 + + Измерение температуры до +65, с точностью 0.01
MD-PS002 5V ±0.2% –100–+150 –40..+125 + Только не агрессивные среды
Жидкостные
MS5803-02BA 1.8–3.6 20 см жидкости 30–1100
(10–2000)
–40..+85 + +
MS5803-07BA 1.8–3.6 0–7 мбар
(70 м погружения)
–20..+85 + +
Open-Smart 5V G1/4 0-1.2 MPa Hydraulic Pressure Sensor for Non-Corrosive Water 5 1.5 % 1–2.4 мбар (max 3) 0..+85 Собственный коннектор, соединяемый к I2C через резистор, датчик оснащен термометром

Конечно, в приведенном списке числятся далеко не все существующие модели. В нем указаны только те, которые обладают определенной популярностью и затребованы пользователями.

Схемы подключения датчика давления жидкости

Среди множества схем, демонстрирующих работу Arduino с датчиком давления жидкости, была выбрана наиболее простая, использующая минимум радиодеталей. С ее помощью можно проводить измерение глубины погружения или уровня заполнения сосуда водой. Итак, понадобится:

Элемент Наименование/характеристики Количество
Микроконтроллер Arduino Nano/Uno или любой клон 1
Экран Display 2×16 ST7032 1
Датчик MS5803 1
Резистор 10 кОм 2
Конденсатор 0.1 мкФ 1
Кнопка Любая, без фиксации нажатия 1

Библиотека работы с датчиком давления берется здесь: https://github.com/millerlp/MS5803_05

С экраном тут: https://yadi.sk/d/KKJwJ1VtDx9PCw

Принципиальная схема

Кнопка нужна для выбора режима отображения — однократное нажатие переключает вывод абсолютных и относительных данных, с сохранением состояния на последующих опросах датчика.

Скетч

Достаточно простая программа для микроконтроллера, заливаемая в него при помощи Arduino IDE:

#DEFINE fButton_pin 2
#DEFINE LED_pin 13
#DEFINE DISPLAY_height 2
#DEFINE DISPLAY_width 16
#DEFINE DISPLAY_contrast 63
// Подключение библиотек и инициализация датчика вместе с дисплеем
#include
#include
// Wire.h подключать не нужно он уже вызван в TroykaTextLCD.h
MS_5803 S = MS_5803(512);
TroykaTextLCD DISPLAY;
// переменные программы
float mmWater = 0;
float TechAtmosphere = 0;
float dObtainedValue = 0;
float ObtainedValue = 0;
void setup() <
// параметры экрана
DISPLAY.setContrast(DISPLAY_contrast);
DISPLAY.begin(DISPLAY_width, DISPLAY_height);
// Установка датчика в 0, FALSE функции блокирует отправку технической информации в консоль
S.initializeMS_5803(FALSE);
delay(1000); // ждем, пока он выполнит инициализацию
// кнопка и светодиод показывающий режимы
pinMode(fButton_pin, INPUT_PULLUP);
pinMode(LED_pin, OUTPUT);
>
void loop() <
// Инициировать сенсор в режим взятия показаний
S.readSensor();
DISPLAY.setCursor(0, 0);
// получить и высветить значения в верхней строчке экрана
ObtainedValue = S.pressure();
DISPLAY.print(ObtainedValue);
DISPLAY.print(«mbar «);
DISPLAY.print(S.temperature());
DISPLAY.print(«C»);
// действия при нажатии кнопки
if (!digitalRead(fButton_pin)) <
// Изменение режима работы светодиода на противоположный
digitalWrite(LED_pin, !digitalRead(LED_pin));
dObtainedValue = ObtainedValue;
>
if (!digitalRead(LED_pin)) <
// абсолютные значения
mmWater = ObtainedValue * 1.019744288922 * 10;
TechAtmosphere = ObtainedValue * 0.001019716212978;
> else <
// относительные значения
mmWater = ((ObtainedValue — dObtainedValue) * 1.019744288922) * 10;
TechAtmosphere = (ObtainedValue — dObtainedValue) * 0.001019716212978;
>
// отображаем на экране значения в технических атмосферах и см воды
DISPLAY.setCursor(0, 1);
DISPLAY.print(TechAtmosphere,3);
DISPLAY.print(«TA «);
DISPLAY.print(mmWater,0);
DISPLAY.print(«mm»);
delay(1000);
DISPLAY.clear();
>

Схемы подключения датчика давления воздуха

Следующая конструкция построена на сенсоре-анероиде BMP180. Экран, в нее входящий, будет отображать текущее давление атмосферного воздуха и температуру окружающей среды. Для изготовления понадобятся:

Элемент Наименование/характеристика Количество
Микроконтроллер Arduino UNO/Nano 1
Датчик BMP180 1
Экран HD447080LCD-1602 1
Резистор 100 Ом 1
Регулируемый резистор До 10 кОм 1

Ну и конечно провода для связки всего названого в единую систему.

Библиотека, управляющая сенсором берется тут: https://github.com/adafruit/Adafruit-BMP085-Library

Принципиальная схема

Фотография итогового устройства:

Плата-шилд самодельная, для желающих повторить, она вблизи:

Датчик питается от 3.3V, соответственно и подключаются его контакты получения энергии (VCC и GND) к плате Arduino. Для передачи данных используются входы A5 (SCL) и A4(SDA). Дисплей с микроконтроллером соединяется согласно следующей таблицы:

Arduino Экран
D6 E и D4 вместе
D4 D5
D3 D6
D2 D7
GND GND
D7 RS

Скетч

Приведенная программа — всего лишь базис операций. Ее можно модифицировать по собственному разумению, добавляя функции отслеживания давления или температуры. Можно даже использовать конечное устройство, после необходимой модификации кода, в качестве своеобразного барометра, предупреждающего об идущей буре. Показания давления, в названом случае сильно упадут.

#define mPAUSE 2500
#include
#include
#include

Adafruit_BMP085 SENS;
LiquidCrystal DISPLAY(7, 6, 5, 4, 3, 2);
void setup() <
DISPLAY.clear();
>
void loop() <
float p = SENS.readSealevelPressure()/101.325 * 0.76;
DISPLAY.setCursor(1, 0);
DISPLAY.print(«T.= «);
if ( SENS.readTemperature()

Использование стороннего аналогового датчика давления

Редко, но все же случаются ситуации, когда по каким-либо причинам использовать в схеме специализированный сенсор, рассчитанный на работу конкретно с Ардуино, не получается. Скажем, его невозможно найти сразу в близлежащих магазинах электроники, а ждать посылку долго. Выходом могут стать датчики давления, применяемые в автомобильной электронике. Их тоже можно связать непосредственно с микроконтроллером.

Примером послужит WABCO 4410400130 — сенсор указанного плана, используемый на большегрузных фурах. Единственное, требующее внимания в представленной схеме — питание у элемента раздельно с Arduino. В последнем, просто нет требуемых для запуска датчика +24 В. В связи с чем и приходится использовать дополнительный блок энергообеспечения, с правильными и достаточными характеристиками питания — 8–32 V постоянного тока, при минимуме 400 mА мощности.

Что касается соединения сенсора напрямую к плате микроконтроллера — в нем на выходе не более 5 В. И чем больше давление, тем меньший ток будет поступать на аналоговые контакты логического устройства. Вот только, на всякий случай, рекомендуется проверить изначальный выход мультиметром, с целью контроля варианта «пробития» сенсора, с возникновением обстоятельств беспрепятственного связывания OUT с минусом или плюсом питающей детектор линии.

Пример скетча получения информации с аналогового датчика:

#include

LiquidCrystal_I2C DISPLAY (0x27, 16, 2);
#define Detector_Pin 0
#include
void setup() <
DISPLAY.init();
DISPLAY.clear;
AnalogReference(DEFAULT);
DISPLAY.setCursor (0,0);
DISPLAY.print(«Data:»);
>
void loop() <
static int AVC = 0;
AVC = (AVC * 3 + AnalogRead(Detector_Pin))/4;
float v = AVC * 5.0 / 1024.0;
float ObtainedValue = (v — 0.5) * 10/4;
DISPLAY.setCursor(0,1);
DISPLAY.print(» «);
DISPLAY.setCursor(0,1);
DISPLAY.print (ObtainedValue);
>

Теперь, что касается данных получаемых на выходе скетча. Нужно провести их градацию с использованием классического манометра, оценив какие цифры идут от сенсора при разном давлении и ввести соответствующую формулу в тело программы.

И в окончании, технические характеристики WABCO 4410400130, для сравнения с похожими датчиками Arduino:

  • Тип: пьезоэлемент
  • Питание: 8–32 V
  • Рабочая температура: −40..+80 °С
  • Диапазон измерения: от 0 до 10 bar
  • Точность: 0.2–0.3 %
  • Предельное давление разрушения: 16 bar

Резюмируя

Надеемся, представленная информация дала достаточно сведений, чтобы выполнить подключение датчика давления любого вида к плате микроконтроллера Arduino. В сущности, ничего сложного нет, для всех вариантов изначальных сенсоров — специализированных цифровых или сторонних аналоговых. Даже количество дополнительных радиодеталей в схемах стремится к нулю.

Видео по теме

Источник

Adblock
detector