Дальномер для ардуино своими руками

Ардуино: ультразвуковой дальномер HC-SR04

Дальномер — это устройство для измерения расстояния до некоторого предмета. Дальномер помогает роботам в разных ситуациях. Простой колесный робот может использовать этот прибор для обнаружения препятствий. Летающий дрон использует дальномер для баражирования над землей на заданной высоте. С помощью дальномера можно даже построить карту помещения, применив специальный алгоритм SLAM.

Принцип действия

На этот раз мы разберем работу одного из самых популярных датчиков — ультразвукового (УЗ) дальномера. Существует много разных модификаций подобных устройств, но все они работают по принципу измерения времени прохождения отраженного звука. То есть датчик отправляет звуковой сигнал в заданном направлении, затем ловит отраженное эхо и вычисляет время полета звука от датчика до препятствия и обратно.

Из школьного курса физики мы знаем, что скорость звука в некоторой среде величина постоянная, но зависящая от плотности среды. Зная скорость звука в воздухе и время полета звука до цели, мы можем рассчитать пройденное звуком расстояние по формуле:

где v — скорость звука в м/с, а t — время в секундах. Скорость звука в воздухе, кстати, равна 340.29 м/с.

Чтобы справиться со своей задачей, дальномер имеет две важные конструктивные особенности. Во-первых, чтобы звук хорошо отражался от препятствий, датчик испускает ультразвук с частотой 40 кГц. Для этого в датчике имеется пьезокерамический излучатель, который способен генерировать звук такой высокой частоты. Во-вторых, излучатель устроен таким образом, что звук распространяется не во все стороны (как это бывает у обычных динамиков), а в узком направлении. На рисунке представлена диаграмма направленности типичного УЗ дальномера.

Как видно на диаграмме, угол обзора самого простого УЗ дальномера составляет примерно 50-60 градусов. Для типичного варианта использования, когда датчик детектирует препятствия перед собой, такой угол обзора вполне пригоден. Ультразвук сможет обнаружить даже ножку стула, тогда как лазерный дальномер, к примеру, может её не заметить.

Если же мы решим сканировать окружающее пространство, вращая дальномер по кругу как радар, УЗ дальномер даст нам очень неточную и шумную картину. Для таких целей лучше использовать как раз лазерный дальномер.

Также следует отметить два серьезных недостатка УЗ дальномера. Первый заключается в том, что поверхности имеющие пористую структуру хорошо поглощают ультразвук, и датчик не может измерить расстояние до них. Например, если мы задумаем измерить расстояние от мультикоптера до поверхности поля с высокой травой, то скорее всего получим очень нечеткие данные. Такие же проблемы нас ждут при измерении дистанции до стены покрытой поролоном.

Второй недостаток связан со скоростью звуковой волны. Эта скорость недостаточно высока, чтобы сделать процесс измерения более частым. Допустим, перед роботом есть препятствие на удалении 4 метра. Чтобы звук слетал туда и обратно, потребуется целых 24 мс. Следует 7 раз отмерить, прежде чем ставить УЗ дальномер на летающих роботов.

Ультразвуковой дальномер HC-SR04

В этом уроке мы будем работать с датчиком HC-SR04 и контроллером Ардуино Уно. Этот популярный дальномер умеет измерять расстояние от 1-2 см до 4-6 метров. При этом, точность измерения составляет 0.5 — 1 см.

Встречаются разные версии одного и того же HC-SR04. Одни работают лучше, другие хуже. Отличить их можно по рисунку платы на обратной стороне. Вот одна из версий:

Подключение HC-SR04

Датчик HC-SR04 имеет четыре вывода. Кроме земли (Gnd) и питания (Vcc) еще есть Trig и Echo. Оба этих вывода цифровые, так что подключаем из к любым выводам Ардуино Уно:

HC-SR04 GND VCC Trig Echo
Arduino Uno GND +5V 3 2

Принципиальная схема устройства

Внешний вид макета

Программа

Итак, попробуем приказать датчику отправить зондирующий ультразвуковой импульс, а затем зафиксируем его возвращение. Посмотрим как выглядит временная диаграмма работы HC-SR04.

На диаграмме видно, что для начала измерения нам необходимо сгенерировать на выводе Trig положительный импульс длиной 10 мкс. Вслед за этим, датчик выпустит серию из 8 импульсов и поднимет уровень на выводе Echo, перейдя при этом в режим ожидания отраженного сигнала. Как только дальномер почувствует, что звук вернулся, он завершит положительный импульс на Echo.

Получается, что нам нужно сделать всего две вещи: создать импульс на Trig для начала измерения, и замерить длину импульса на Echo, чтобы потом вычислить дистанцию по нехитрой формуле. Делаем.

Функция pulseIn замеряет длину положительного импульса на ноге echoPin в микросекундах. В программе мы записываем время полета звука в переменную duration. Как мы уже выяснили ранее, нам потребуется умножить время на скорость звука:

s = duration * v = duration * 340 м/с

Переводим скорость звука из м/с в см/мкс:

s = duration * 0.034 cм/мкс

Для удобства преобразуем десятичную дробь в обыкновенную:

s = duration * 1/29 = duration / 29

А теперь вспомним, что звук прошел два искомых расстояния: до цели и обратно. Поделим всё на 2:

s = duration / 58

Теперь мы знаем откуда взялось число 58 в программе!

Загружаем программу на Ардуино Уно и открываем монитор последовательного порта. Попробуем теперь наводить датчик на разные предметы и смотреть в мониторе рассчитанное расстояние.

Задания

Теперь, когда мы умеем вычислять расстояние с помощью дальномера, сделаем несколько полезных устройств.

  1. Строительный дальномер. Программа каждые 100мс измеряет расстояние с помощью дальномера и выводит результат на символьный ЖК дисплей. Для удобства полученное устройство можно поместить в небольшой корпус и запитать от батареек.
  2. Ультразвуковая трость. Напишем программу, которая будет «пищать» зуммером с различной частотой, в зависимости от измеренного расстояния. Например, если расстояние до препятствия более трех метров — зуммер издает звук раз в пол секунды. При расстоянии 1 метр — раз в 100мс. Менее 10см — пищит постоянно.

Заключение

Ультразвуковой дальномер — простой в использовании, дешевый и точный датчик, который отлично выполняет свою функцию на тысячах роботов. Как мы выяснили из урока, у датчика есть недостатки, которые следует учитывать при постройке робота. Хорошим решением может стать совместное использование ультразвукового дальномера в паре с лазерным. В таком случае, они будут нивелировать недостатки друг друга.

Источник

Ультразвуковой дальномер на Arduino

Предисловие

Так получилось, что в университете я изучаю C/C++. Для души пробую делать небольшие проекты на Python. Я много слышал про платформу Arduino, смотрел видео на YouTube, частенько посещал Arduino Project Hub и вот мне стало интересно самому поэкспериментировать, углубясь в разработку под микроконтроллеры. Купив стартовый набор с самой платой и горстью электронных компонентов и попробовав собрать проекты из обучающей брошюры, понял, что надо двигаться дальше. Продумав саму идею следующей самоделки, отправился на просторы Google и обнаружил, что не могу найти всего, что мне нужно на одном ресурсе. Безусловно, мне несложно было посетить несколько сайтитов и блогов с информацией, но я бы сильно сэкономил время, если бы нашел все в одном месте. Так и появилась эта статья-туториал.

Суть проекта

Мне хотелось сделать дальномер. Во-первых, из-за того, что у меня был ультразвуковой датчик и надо было научиться с ним взаимодействовать. Во-вторых, я хотел выводить всю информацию на OLED-дисплей. В статьях, которые я находил, либо рассказывалось про работу с дисплеем и датчиком по отдельности, либо они являлись частью совершенно другого проекта. Я собрал все необходимое тут и надеюсь, что это сможет как-то помочь другим.

Любая плата Arduino (у меня Uno);

Ультразвуковой дальномер HC-SR04;

OLED-дисплей на 0,96 дюймов;

Работа с OLED-дисплеем

OLED-дисплей идеально подходит для DIY-устройств. Во-первых, мы имеем достаточно высокое разрешение экрана — 128×64 пикселя. Во-вторых, дисплей работает без модуля подсветки, что обеспечивает низкое потребление энергии. В-третьих, для подключения используется всего четыре разъема — два для питания и два для обмена информацией. Но несмотря на это, у OLED-дисплеев есть и минусы. Со временем пиксели могут тускнеть и перегорать.

Вот таким образом можно подключить дисплей:

Схема подключения

Есть несколько библиотек для работы с OLED-дисплеями, мне больше нравится OLED_I2C. Мне она кажется очень простой и максимально понятной. Следующим образом выведем классический «Hello, world!» на дисплей:

Если функции без параметров понятны сразу и не вызывают вопросов, то с функциями вывода на дисплей могут быть вопросы. Давайте сразу с ними разберемся, их существует всего три вида:

print(st, x, y) — печать строки на дисплей.
Параметры:
st: строка для печати;
x: координата верхнего левого угла первого символа по горизонтали;
y: координата верхнего левого угла первого символа по вертикали.
В качестве координат можно использовать как сами координаты, так и литералы LEFT, CENTER, RIGHT.

printNumI(num, x, y, [length, [filler]]) — печать целого числа на дисплей.
Параметры:
num: Число для вывода на экран (от -2147483648 до 2147483647);
x: координата верхнего левого угла первой цифры/знака по горизонтали;
y: координата верхнего левого угла первой цифры/знака по вертикали;
length: минимальное количество цифр для отображения на экране;
filler: Символ для заполнения, чтобы получить минимальную длину. По умолчанию “ “.
В качестве координат можно использовать как сами координаты, так и литералы LEFT, CENTER, RIGHT.

printNumF(num, dec, x, y, [divider, [length, [filler]]]) — печать числа с плавающей точкой на дисплей.
Параметры:
num: Число для вывода на экран (от -2147483648 до 2147483647);
dec: количество цифр после запятой (в дробной части) (допустимые значения 1-5);
x: координата верхнего левого угла первой цифры/знака по горизонтали;
y: координата верхнего левого угла первой цифры/знака по вертикали;
divider: Одиночный символ для использования в качестве десятичной точки. По умолчанию ‘.’;
length: минимальное количество цифр для отображения на экране;
filler: Символ для заполнения, чтобы получить минимальную длину.
По умолчанию “ “.В качестве координат можно использовать как сами координаты, так и литералы LEFT, CENTER, RIGHT.

Работа с ультразвуковым дальномером

Ультразвуковой датчик расстояния работает по принципу эхолокации — посылает пучок ультразвука и получает его отражение с некоторой задержкой, с помощью которой и можно высчитать расстояние до объекта. Работает датчик от напряжения в 5V на расстоянии от 2 до 400 сантиметров.

Для получения данных с датчика необходимо:

Подать на выход Trig импульс длительностью 10 микросекунд;

Трансмиттер отправит 8 импульсов с частотой 40 кГц;

Когда импульсы отразятся от препятствия и будут приняты ресивером, то на выходе Echo образуется входной сигнал;

С помощью формулы данные преобразуются в расстояние. Чтоб получить расстояние в сантиметрах, нам необходимо разделить ширину импульса на 58, для получения расстояния в дюймах — на 148.

Подключить датчик к плате можно следующим образом:

Схема подключения

Финальный проект

Теперь, когда мы разобрались с работой с каждого элемента по отдельности, можно перейти к основному проекту дальномера.

Подключим все элементы к плате следующим образом:

Схема проекта

Финальный проект в работе выглядит следующим образом:

Что дальше?

Проект дальномера готов и прекрасно работает, но несмотря на все, он не является идеальным законченным решением. Можно поработать над улучшениями, и сделать следующие:

Перенести все на монтажную плату и избавиться от макетки. Тогда получится цельное устройства без торчащих проводов;

Перейти на Arduino Nano ради более компактного размера;

Добавить автономное питание для работы без кабеля;

Источник

Самодельный лидар на Arduino и VL53L0X TOF-дальномере

В этом проекте мы сделаем свой лидар. По характеристикам он конечно немного не дотягивает до коммерчески выпускаемых лидаров, но вполне подойдёт для небольшого простого робота, чтобы он мог обнаруживать и избегать препятствия на своём пути или более-менее точно строить карту помещения.

Я объясню вам, что такое лидар, принципы его работы и один из вариантов, как его можно сделать на Arduino и времяпролётном (TOF) инфракрасном датчике расстояния.

Корпус лидара можно сделать по-разному, но для данного проекта разработал я выбрал один из самых простых и удобных вариантов его изготовления — напечатал на 3D-принтере. Корпус сделан так, чтобы верхняя часть, в которой установлен дальномер, мог вращаться на 360 градусов без остановки. Чтобы верхняя часть не болталась и могла легко вращаться, в основании большого размера установлен подшипник.

Лидар (LIDAR, Light Detection and Ranging — «обнаружение и определение дальности с помощью света») — технология получения и обработки информации об удалённых объектах с помощью активных оптических систем, использующих явления поглощения и рассеяния света в оптически прозрачных средах. Лидар как прибор представляет собой, как минимум, активный дальномер оптического диапазона. Есть несколько типов лидаров, один из них – это сканирующие лидары, с помощью которых формируют двумерную или трёхмерную картину окружающего пространства. В данном случае с помощью нашего лидара можно получать информацию о расстояниях в двумерном пространстве, т.е. на плоскости.

VL53L0X – это миниатюрный высокоточный лазерный дальномер, обеспечивающий измерение расстояния до 2 м. Для измерения расстояния используется метод измерения времени (TOF, Time-of-Flight). TOF-дальномеры ещё называют время пролётными дальномерами. В датчике установлен миниатюрный лазер и фоточувствительная матрица диодов. Лазер короткими импульсами испускает свет, который отражаясь от препятствий попадает обратно и регистрируется на фоточувствительной матрице. Датчик измеряет время, за которое свет прошёл путь от излучателя до препятствия и обратно до датчика и на основе этого вычисляет расстояние до препятствия.

Датчик обнаруживает препятствие перед собой, а нам нужно строить двумерную карту с информацией о преградах вокруг. Чтобы получать информацию о преградах вокруг и иметь возможность строить двумерную карту, нам нужно вращать датчик.

Вращая датчик, постоянно измеряется расстояние. После каждого измерения в последовательный порт отправляются данные о текущем расстоянии и угле, на который в данный момент был повёрнут датчик.

Существует несколько способов, как определять текущий угол поворота.

Очень часто используется следующий метод. Используя коллекторный мотор, маленький магнит и датчик холла, можно раскрутить мотор до нужной скорости и затем по датчику холла определять момент, когда при вращении магнит окажется возле датчика холла.

В момент, когда магнит приблизился к датчику холла, в программе переменной «угол» присваивается значение 0. Мотор постоянно вращает датчик, периодически производятся измерения расстояний до препятствий и текущий угол поворота датчика.

Текущий угол поворота вычислить не сложно. В программе можно получить информацию о том, сколько тактов прошло с момента включения микроконтроллера. Если, к примеру, Arduino работает на частоте 16Мгц, в секунду таких тактов будет 16 миллионов, т.е. каждый такт это 1/16 000 000 секунды. Этого более чем достаточно для точного измерения времени при реализации такого лидара. Можно использовать и не системный таймер-счётчик, считающий такты микроконтроллера, принцип будет такой же.

После каждого измерения расстояния вычисляется, сколько тактов прошло с последнего измерения (прошло = текущее – предыдущее). Скорость вращения постоянна и известна (за сколько тактов таймер-счётчика делается один оборот), время, прошедшее с последнего измерения тоже. На основе этих данных и вычисляется текущий угол поворота.

Вместо датчика холла можно использовать магнитный или абсолютный оптический энкодер и при каждом измерении расстояния, ещё получать информацию о текущем угле поворота.

В данном лидаре используется другой способ. Он очень прост в реализации и в некоторых случаях очень удобен. Для его реализации нужен шаговый мотор, маленький магнит и датчик холла.

Шаговый мотор в отличие от коллекторного вращается не постоянно, а проворачивается на небольшой фиксированный угол (который ещё называют «шаг», от сюда и название «шаговый мотор»), после чего вал мотора удерживается в текущем положении до тех пор, пока драйверу мотора не поступит команда опять провернуть вал в нужную сторону.

Магнит и датчик холла используется аналогично первому методу – когда магнит приблизился к датчику холла, в программе переменной «угол» присваивается значение 0. После каждой команды провернуть вал в ту или иную сторону, значение некоторой переменной изменяется в большую или в меньшую сторону (в зависимости от направления поворота), на некоторое значение.

Можно увеличивать или уменьшать значение переменной на единицу после каждого шага или делая несколько шагов, изменять значение переменной на соответствующее число. В таком случае в переменной будет храниться количество шагов.

Можно сразу считать не количество шагов, а вычислять угол, на который провернулся вал шагового мотора. Если дальномер вращается на прямую от мотора, а через редуктор, при вычислении угла делается поправка на придаточное число редуктора. В данном случае мотор подключен не на прямую и сразу вычисляется угол поворота в градусах.

В loop цикле программы сначала делается два шага, производится измерение расстояния и затем к переменной «угол» прибавляется 2.4 (градуса). 2.4 градуса на два шага это с шага используемого шагового мотора и придаточного числа редуктора.

Удобство использования шагового мотора заключается в том, что можно проворачивать датчик на нужный угол, делая один или несколько шагов в нужную сторону и только когда датчик смотрит в нужном направлении, уже и делать измерения расстояния.

После того, как мотор провернёт вал, он будет оставаться в этом положении столько, сколько нужно и в коде можно сколь угодно долго делать что-то до следующей команды драйверу мотора провернуть вал. В случае использования коллекторного мотора, он ждать не будет и продолжит вращать датчик.

Используя шаговый мотор можно сканировать препятствия также, как и в случае с коллекторным мотором, постоянно вращая на 360 градусов датчик и делая измерения.

Если нам нужно измерять расстояния только в определённом направлении, допустим в направлении 0° или 45°, мы может провернуть датчик на нужный угол и затем производить измерения расстояния в этом направлении столь угодно долго.

Если нужно сканировать некоторый сектор, допустим в пределах 200-250°, можно не постоянно вращать на 360градусов, а поворачивать датчик сначала влево, затем вправо в нужных нам пределах.

Используемые компоненты

1 х Arduino NANO
1 х Модуль с датчиком VL53L0X
1 х Повышающий преобразователь
1 х Шаговый мотор
1 х Драйвер шагового мотора на микросхеме A4988
1 х Скользящие контакты (slip ring) на 6 проводов. Диаметр 12.5мм, длина 15мм или меньше
1 х 6710ZZ подшипник
1 х Датчик Холла 49E
1 х Макетная плата
1 х 100 мкФ электролитический конденсатор
1 х 5 мм х 1 мм неодимовый магнит

Так же понадобиться резистор на 10К, немного M3 винтов, гаек, вставных гаек (резьбовые вставки, insert nuts), «пасик» и напечатанный на 3D-принтере корпус, припой и паяльник.

3D-файлы для печати можно скачать по следующей ссылке. Для печати использовался PLA пластик. Вместо стального подшипника можно использовать напечатанный (стальные шарики продаются пакетами, к примеру, как запасные для линейных направляющих). Модель для печати можно начертить самостоятельно или попробовать поискать на сайте Thingiverse, Cults и т.д., к примеру введя в поиск «parametric bearing». Вместо подшипника можно распечатать просто пластиковое кольцо, например, из PLA, PETG, нейлона или пэт. Если используемый пластик будет недостаточно скользить или переживаете, что со временем из-за трения протрёт, сверху и снизу можно наклеить липкую ленту или кольцо из какого-нибудь материала (плёнки для ламинации, плёнки для лазерной печати, упаковки для фломастеров, тонкостенной коробочки и т.д.).

Повышающий стабилизатор нужен для шагового мотора. Такие моторы обычно потребляют максимум сотни миллиампер. Стабилизатор желательно взять с запасом, допустим на 1А или больше. Выходное напряжение питания у стабилизатора, 12В или более. Выбирая стабилизатор, так же учитывайте, что они не должен быть слишком большой, иначе его нельзя будет поместить внутри корпуса.

Схема

Схема проста, часть деталей запаивается на макетной плате.

Через скользящие контакты от Arduino к датчику VL53L03X подключаются контакты +5В, земля и две линии интерфейса I2C (SCL и SDA). К датчику Холла подключается земля, +5В и вывод D8 от Arduino. Также между +5В и D8 устанавливается резистор на 10кОм.

На повышающего преобразователя подаётся 5В. На плате построечным резистором устанавливается выходное напряжение примерно 12В. Эти 12В с выхода стабилизатора подключаются к выводам «питание мотора» модуля драйвера моторов. Так же по линии 12В устанавливается электролитический конденсатор, который нужен что бы драйвер мотора работал без сбоев (на плате его может не быть совсем, а даже когда запаян керамический или танталовый конденсатор, его ёмкости обычно недостаточно). 5В подключается к выводам «питание логики» драйвера моторов. Не перепутайте, где выводы «питание логики» и «питание мотора», иначе драйвер может выйти из строя.

Платы бывают разные, иногда плюс питания для мотора обозначается, допустим надписью VMOT, а плюс питания логики обозначаться как VCC. Выводов GND на плате может быть один или несколько, в данном случае это не имеет значения.

Выводы STEP, DIR и EN от драйвера моторов подключаются к Arduino, а выводы RESET и SLEEP соединяются между собой.

На платах с драйвером моторов A4988 обычно запаян подстроечный резистор, им настраивается ограничение по току для шагового мотора. Ограничение тока для шаговых моторов очень желательно настроить. Если ограничить ток слишком сильно, мотор под нагрузкой или не сможет вообще проворачивать вал или будут пропуски шагов. Если задать слишком большой ток и источник питания способен будет его обеспечить, мотор будет греться или его обмотки просто сгорят. Так же это абсолютно ненужная нагрузка на источник питания. При питании от аккумулятора это приведёт к тому, что он будет быстрей разряжаться. При питании от USB (блока питания, порт компьютера или ноутбука и т.д.) в лучшем случае будет просто лишняя нагрузка, в худшем, когда блок питания или порт не рассчитан на такой ток и нет защиты, это даже может привести к выходу из строя блока питания или порта.

Вот и все. В качестве источника питания используется USB-кабель, подключенный к Arduino NANO.

Печать корпуса и сборка

Загрузите файлы STL, по ссылке выше (после списка деталей) и распечатайте детали корпуса. Настройте слайсер, в зависимости от особенностей вашего принтера и типа пластика, которым будете печатать. В данном случае детали напечатаны PLA пластиком, основные настройки были следующими — 2 периметра, высота слоя 0.3 мм, заполнение 20%. Когда детали корпуса будут готовы, можно приступить к сборке.

Возьмите скользящие контакты и поместите его в верхнюю часть корпуса. Убедитесь, что вращающаяся часть кольца находится на верхней стороне корпуса, чтобы она вращалась одновременно с диском. Теперь установите шаговый мотор, который фиксируется к корпусу двумя 3M винтами и гайкам. Крышка готова:

Теперь установим большой подшипник в верхней части корпуса:

Вплавьте две резьбовые вставки в корпус вращающегося диска, на котором будет закрепляется датчик нужно вплавить вставные гайки. Для этого можно использовать паяльник:

Теперь пропускаем провода от скользящих контактов через отверстие вращающегося диска:

После чего берём датчик и припаиваем к нему 4 провода (+5V, GND, SCL и SDA) от скользящих контактов:

С помощью двух болтов М3 закрепляем модуль дальномера на корпусе вращающегося диска:

Если у вас модуль с другим расстоянием между крепёжными отверстиями, модуль можно закрепить только одним болтом. Если крепёжных отверстий совсем нет, модуль можно приклеить (двустороння липкая лента, термоклеем с помощью клеевого пистолета и т.д.).

Когда датчик будет закреплён, вращающийся диск надевается на подшипник:

На вращающуюся крышку приклеивается неодимовый магнит, а в верхнюю крышку вставляется датчик холла:

Магнит служит для того, чтобы на него на него срабатывал датчик Холла и в этот момент в коде происходит установка переменной «угол» в некоторое значение. Если магнит по размерам позволяет наклеить его по центру под датчиком, это будет самый лучший вариант, т.к. при срабатывании переменной «угол» нужно будет присвоить значение 0. Если нет, магнит можно наклеить возле датчика. Тогда переменной «угол» нужно будет присвоить не 0, а соответствующее значение (на какой угол относительно магнита повёрнут датчик). Если магнит находится с противоположной стороны, нужно присвоить 180. Если угол составляет 20 градусам (на фото выше угол немного больше):

Тогда переменной «угол» нужно присвоить 20 и т.д.

На макетную плату по схеме, приведенной ранее, запаиваем конденсатор, драйвер мотора, 10K резистор, датчик Холла, провода от Arduino и стабилизатора питания:

Всё припаяно, теперь закрепляем (двусторонней липкой лентой, клеем, термоклеем и т.д.) Arduino Nano внутри корпуса и наш лидар почти готов:

Осталось вплавить в нижнюю крышку корпуса три вставные гайки, затем прикрутить крышку корпуса, надеть на шкив пасик и можно переходить к программированию и экспериментам.

Скетч для Arduino

Откройте Arduino IDE и скопируйте в него скетч. Если при загрузке скетча в плату появится сообщение, что отсутствует библиотека «Adafruit_VL53L0X.h»:

Её нужно будет установить. Для этого в меню «Инструменты» выберете пункт «Управлять библиотеками. » и в появившемся окне найдите «Adafruit_VL53L0X» (что бы сократить список, можно ввести в поле поиска «VL53»:

Для VL53L0X кроме библиотеки от Adafruit есть и от Pololu. Подключается она аналогичным образом, но код нужно немного изменить:

В коде для обоих библиотек, в самом начале цикла loop мы проверяем, не сработал ли датчик Холла (в прерывании для этого переменной loop_starts устанавливается значение true) и, если сработал, устанавливаем переменной angle значение 0. Если у вас магнит находится не центру под датчиком, присвойте этой переменной соответствующее число.

Далее в коде отправляем команду драйверу мотора провернуть вал на один шаг, небольшая пауза с помощью delayMicroseconds, затем опять проворачиваем вал на один шаг и опять пауза.

После этого вызываем функцию измерения расстояния и проверяем, считал ли датчик корректные данные. При получении корректных данных от датчика, полученные данные о расстоянии присваиваются переменной r. Затем происходит проверка, выходит ли измеренное расстояние за установленные границы (переменная maxdist) и, если выходит, переменной r присваивается значение maxdist.

В конце цикла в последовательный порт выводятся полученные данные и к текущему значению переменной angle прибавляется значение переменной angle_step (в данном коде это 2.4, т.е. 2.4 градуса). Если у вас шаговый мотор с другим шагом, будете использовать режим микрошага, измените размеры шкивов или будете делать не два, а один, три или ещё сколько-то шагов, не забудьте пересчитать на какой угол будет вращаться датчик и присвоить переменной angle_step соответствующее значение.

Скетч для компьютера

Для визуализации используется приложение Processing, скачать его можно по следующей ссылке. Запустив среду Processing можно переключить языка интерфейса на русский. Для этого в меню нажмите «File», затем » Preferences…» и в открывшемся окне можно будет переключить язык:

Если при запуске появится сообщение, что не найдено Android SDK:

можно проигнорировать это сообщение и просто закрыть окно, нажав на крестик. Только при когда отобразиться окно программы, нужно будет переключить среду Processing из режима работы «Android» в режим «Java». Для этого слева вверху нажмите на «Android»:

И в появившемся меню выберете пункт «Java»:

После чего среда автоматически перезапустится:

Создайте новый скетч (файл -> создать) и скопируйте в него скетч:

Одно из отличий Processing от Arduino IDE заключается в том, как выбирается последовательный порт. В Processing порт выбирается не в меню, а в коде по индексу массива. При запуске скетча, внизу окна выводится список портов:

Найдите в списке порт, к которому подключена Arduino и в строчке:

myPort = new Serial(this, Serial.list()[0], 115200);

при необходимости поменяйте индекс. Если к примеру текущий порт «COM4», замените в коде ноль на единицу:

Источник

Adblock
detector