Блок питания для телефонов принципиальная схема

«Электроника и Радиотехника»

Домашний мастер.

Напряжение на выходе примерно 7.8V. Под нагрузкой 0.5А напряжение падает примерно до 4-5V.

Возможно, трансформатор имеет дополнительно 2-е обмотки (если это не просто проволочки, идущие к экранирующей фольге). Обмотки подседины к «минусу» одним концом. Второй конец никуда не подцеплен. Обмотки играют роль экранов и применяются также для динамического подавления ЭМИ помех, возникающих во время работы трансформатора (может быть именно поэтому, отсутствует конденсатор между + 300V и коллектором транзистора Т2).

*некоторые значения конденсаторов неточные!

Доработка ЗУ сотового телефона

Сотовые телефоны комплектуют зарядными устройствами (ЗУ), построенными на основе обратноходового преобразователя напряжения, часто такие ЗУ собраны по упрощенной схеме и имеют невысокую надежность.

На рисунке показана схема одного из вариантов ЗУ.

Напряжение сети через резистор R1, который выполняет функции предохранителя, поступает на мостовой выпрямитель на диодах VD1 —VD4 и сглаживается конденсатором С1. Производители ЗУ сетевые фильтры для подавления помех используют редко, кроме того, часто применяют не мостовой, а однополупериодный выпрямитель.

Стабилизация выходного напряжения осуществляется косвенным методом. Для этого напряжение обмотки III трансформатора выпрямляется диодом VD6, сглаживается конденсатором СЗ и через стабилитрон VD5 поступает на базу транзистора. В момент подключения ЗУ к сети, а также при резких колебаниях напряжения в сети ток через транзистор VT1 превышает допустимое значение, что приводит к выходу его из строя. В большинстве случаев выходят из строя также резисторы R1, R6 и стабилитрон VD5.

Для повышения надежности ЗУ предлагается его доработка, заключающаяся во введении дополнительных элементов VT2, R8, обведенных на схеме штрихпунктирной линией.

При увеличении тока через транзистор VT1 более 60. 70 мА транзистор VT2 открывается и шунтирует базовую цепь транзистора VT1, ограничивая протекающий через него ток. Можно применить транзисторы серий КТ315, КТ3102 с любыми буквенными индексами, резистор — МЛТ, Р1-4, С2-23. ЗУ, доработанные таким способом, показали более высокую надежность работы.

Принципиальная схема устройства представляет собой классический импульсный преобразователь обратного хода (рис. 1). Подобные простые схемы широко применяются в импульсных блоках питания и зарядных устройствах мощностью до 25 Вт с соответствующим использованием более мощных деталей. Заявленные характеристики устройства — выходное напряжение 5,7 V , ток 800 мА.

Коротко рассмотрим описание работы схемы

Напряжение сети подается через токоограничивающий резистор R 1 на вход выпрямителя, выполненного на диодах D 1- D 4. На транзисторе Q 1 собран автогенератор, частота которого в основном определяется характеристиками применяемого здесь импульсного трансформатора TF 1. Резистор R 3 задает режим работы транзистора Q 1. Стабилизация выходного напряжения происходит за счет использования обмотки обратной связи импульсного трансформатора TF 1 и цепочки D 7, С4, ZD 1. Транзистор Q 2 и резистор R 2 служат для ограничения тока транзистора Q 1 в момент запуска автогенератора, а также в случае перегрузки или короткого замыкания на выходе устройства. Схема содержит простейший выпрямитель выходного напряжения на диоде D 8 и конденсаторе С5. Резистор R 6 служит для разрядки конденсатора С5 после выключения устройства.

Схема еще одного варианта зарядного устройства мобильного телефона показана на рис.1.

Источник

Зарядное устройство мобильного телефона

Сетевое зарядное устройство для мобильного телефона в простейшем случае выполняется по схеме однотактного импульсного высокочастотного преобразователя, что позволяет значительно уменьшить габариты источника, к тому же он имеет высокий КПД.

Типовая схема зарядного устройства для мобильного телефона представлена на рисунке 1:

На транзисторе VT1 собран автогенератор, частота которого зависит от ёмкости С4. Запуск автогенератора осуществляется с помощью элементов VD6, VD7 и C3, при этом важно соблюсти полярность подключения выводов обмоток I и III трансформатора.

У разных производителей зарядных устройств мобильных телефонов могут быть некоторые отличия от типовой схемы. Например: диодный мостик VD1 – VD4 заменяют одним диодом, как показано на рисунке 2:

Кроме того, на выходе выпрямителя может быть установлен стабилизатор напряжения на транзисторе VT2.

В схеме преобразователя, для улучшения ключевых характеристик высоковольтного транзистора, дополнительно устанавливают транзистор VT2, как показано на рисунке 3:

Встречаются схемы зарядных устройств для мобильного телефона с индикацией окончания заряда, пример такой показан на рисунке 4:

Подборка схем зарядных устройств мобильного телефона в формате PDF скачать здесь…

Источник

Основные схемы импульсных сетевых адаптеров для зарядки телефонов

Схемы импульсных сетевых адаптеров для зарядки телефонов

Большинство современных сетевых зарядных устройств собрано по простейшей импульсной схеме, на одном высоковольтном транзисторе (рис. 1) по схеме блокинг-генератора.

В отличие от более простых схем на понижающем 50 Гц трансформаторе, трансформатор у импульсных преобразователей той же мощности гораздо меньше по размерам, а значит, меньше размеры, вес и цена всего преобразователя. Кроме того, импульсные преобразователи более безопасны — если у обычного преобразователя при выходе из строя силовых элементов в нагрузку попадает высокое нестабилизированное (а иногда и вообще переменное) напряжение со вторичной обмотки трансформатора, то при любой неисправности «импульсника» (кроме выхода из строя оптрона обратной связи — но его обычно очень хорошо защищают) на выходе вообще не будет никакого напряжения.

Рекомендуем:  Как обновить драйвера видеокарты intel core i5

Подробнейшее описание принципа действия (с картинками) и расчета элементов схемы высоковольтного импульсного преобразователя (трансформатор, конденсаторы и пр.) можно прочитать, например, в «ТЕА152х Efficient Low Power Voltage supply» по ссылке http://www. nxp.com/acrobat/applicationnotes/AN00055.pdf (на английском).

Переменное сетевое напряжение выпрямляется диодом VD1 (хотя иногда щедрые китайцы ставят целых четыре диода, по мостовой схеме), импульс тока при включении ограничивается резистором R1. Здесь желательно поставить резистор мощностью 0,25 Вт — тогда при перегрузке он сгорит, выполнив функцию предохранителя.

Преобразователь собран на транзисторе VT1 по классической обратноходовой схеме. Резистор R2 нужен для запуска генерации при подаче питания, в этой схеме он необязателен, но с ним преобразователь работает чуть стабильней. Генерации поддерживается благодаря конденсатору С1, включенному в цепь ПОС на обмотке частота генерации зависит от его емкости и параметров трансформатора. При отпирании транзистора напряжение на нижних по схеме выводах обмоток / и II отрицательное, на верхних — положительное, положительная полуволна через конденсатор С1 еще сильней открывает транзистор, амплитуда напряжения в обмотках возрастает. То есть транзистор лавинообразно открывается. Через некоторое время, по мере заряда конденсатора С1, базовый ток начинает уменьшаться, транзистор начинает закрываться, напряжение на верхнем по схеме выводе обмотки II начинает уменьшаться, через конденсатор С1 базовый ток еще сильней уменьшается, и транзистор лавинообразно закрывается. Резистор R3 необходим для ограничения базового тока при перегрузках схемы и выбросах в сети переменного тока.

В это же время амплитудой ЭДС самоиндукции через диод VD4 подзаряжается конденсатор СЗ — поэтому преобразователь и называется обратноходовым. Если поменять местами выводы обмотки III и подзаряжать конденсатор СЗ во время прямого хода, то резко возрастет нагрузка на транзистор во время прямого хода (он может даже сгореть из-за слишком большого тока), а во время обратного хода ЭДС самоиндукции окажется нерастраченной и выделится на коллекторном переходе транзистора — то есть он может сгореть от перенапряжения. Поэтому при изготовлении устройства нужно строго соблюдать фазировку всех обмоток (если перепутать выводы обмотки II — генератор просто не запустится, так как конденсатор С1 будет наоборот, срывать генерацию и стабилизировать схему).

Выходное напряжение устройства зависит от количества витков в обмотках II и III и от напряжения стабилизации стабилитрона VD3. Выходное напряжение равно напряжению стабилизации только в том случае, если количество витков в обмотках II и III одинаковое, в противном случае оно будет другое. Во время обратного хода конденсатор С2 подзаряжается через диод VD2, как только он зарядится до примерно -5 В, стабилитрон начнет пропускать ток, отрицательное напряжение на базе транзистора VT1 чуть уменьшит амплитуду импульсов на коллекторе, и выходное напряжение стабилизируется на некотором уровне. Точность стабилизации у этой схемы не очень высока — выходное напряжение гуляет в пределах 15. 25% в зависимости от тока нагрузки и качества стабилитрона VD3.
Схема более качественного (и более сложного) преобразователя показана на рис. 2

Для выпрямления входного напряжения используется диодный мостик VD1 и конденсатор , резистор должен быть мощностью не менее 0,5 Вт, иначе в момент включения, при зарядке конденсатора С1, он может сгореть. Емкость конденсатора С1 в микрофарадах должна равняться мощности устройства в ваттах.

Сам преобразователь собран по уже знакомой схеме на транзисторе VT1. В цепь эмиттера включен датчик тока на резисторе R4 — как только протекающий через транзистор ток станет столь большим, что падение напряжения на резисторе превысит 1,5 В (при указанном на схеме сопротивлении — 75 мА), через диод VD3 приоткроется транзистор VT2 и ограничит базовый ток транзистора VT1 так, чтобы его коллекторный ток не превышал указанные выше 75 мА. Несмотря на свою простоту, такая схема защиты довольно эффективна, и преобразователь получается практически вечный даже при коротких замыканиях в нагрузке.

Для защиты транзистора VT1 от выбросов ЭДС самоиндукции, в схему добавлена сглаживающая цепочка VD4-C5-R6. Диод VD4 обязательно должен быть высокочастотным — идеально BYV26C, чуть хуже — UF4004-UF4007 или 1 N4936, 1 N4937. Если нет таких диодов, цепочку вообще лучше не ставить!

Конденсатор С5 может быть любым, однако он должен выдерживать напряжение 250. 350 В. Такую цепочку можно ставить во все аналогичные схемы (если ее там нет), в том числе и в схему по рис. 1 — она заметно уменьшит нагрев корпуса ключевого транзистора и значительно «продлит жизнь» всему преобразователю.

Стабилизация выходного напряжения осуществляется с помощью стабилитрона DA1, стоящего на выходе устройства, гальваническая развязка обеспечивается оптроном V01. Микросхему TL431 можно заменить любым маломощным стабилитроном, выходное напряжение равно его напряжению стабилизации плюс 1,5 В (падение напряжения на светодиоде оптрона V01)’, для защиты светодиода от перегрузок добавлен резистор R8 небольшого сопротивления. Как только выходное напряжение станет чуть выше положенного, через стабилитрон потечет ток, светодиод оптрона начнет светиться, его фототранзистор приоткроется, положительное напряжение с конденсатора С4 приоткроет транзистор VT2, который уменьшит амплитуду коллекторного тока транзистора VT1. Нестабильность выходного напряжения у этой схемы меньше, чем у предыдущей, и не превышает 10. 20%, также, благодаря конденсатору С1, на выходе преобразователя практически отсутствует фон 50 Гц.

Рекомендуем:  Блок питания для домофонов схема подключения

Трансформатор в этих схемах лучше использовать промышленный, от любого аналогичного устройства. Но его можно намотать и самому — для выходной мощности 5 Вт (1 А, 5 В) первичная обмотка должна содержать примерно 300 витков проводом диаметром 0,15 мм, обмотка II — 30 витков тем же проводом, обмотка III — 20 витков проводом диаметром 0,65 мм. Обмотку III нужно очень хорошо изолировать от двух первых, желательно намотать ее в отдельной секции (если есть). Сердечник — стандартный для таких трансформаторов, с диэлектрическим зазором 0,1 мм. В крайнем случае, можно использовать кольцо внешним диаметром примерно 20 мм.

Источник

Сетевой адаптер Samsung ETAOU10EBE — простой ИБП на двух транзисторах

Вступление — От меньшего к большему

В ранней статье был описан «Импульсный адаптер для мобильного телефона 220-5 Вольт на одном транзисторе» (1). Было много критики по поводу использования такого блока питания, но это был примитивный вариант для простых нужд, который очень легко повторить и сделать самостоятельно без особых расчётов и настройки.

В дальнейшем была опубликована статья «Простое зарядное устройство литий-ионных аккумуляторов малой ёмкости на TP4056» (2), в которой также была использована подобная схемо-техника преобразователя, но уже на двух транзисторах. Недостатками обеих преобразователей является низкий коэффициент стабилизации, что обусловлено совмещением этой цепи с контуром положительной обратной связи для поддержания генерации преобразователя.

В упомянутых статьях автором было обещано рассмотреть такой же простой блок питания, но уже с непосредственной стабилизацией выходного напряжения. Так вот настало время вернуться к теме, и для тех, кому не жалко добавить пару радиокомпонентов, показать более продвинутую схему. Если по схеме в статье [1] массово производились дешёвые адаптеры 2000-ых годов, то в 2010-ых популярной стала именно приводимая здесь топология, поскольку большинство разбираемых по сей день бюджетных адаптеров, выполнено именно в таком стиле. Такие преобразователи имеют неплохие параметры и довольно высокую надёжность за счёт добавления в схему развязывающего оптрона, непосредственно с выхода в цепь отрицательной обратной связи генератора.

В качестве примера для рассмотрения, был взят сетевой адаптер вьетнамского производства небольшой мощности, для зарядки и питания мобильных телефонов. Вообще то адаптер маркируется как «Samsung ETAOU10EBE», но с его помощью можно заряжать любые маломощные устройства и обеспечивать питанием потребители, имеющие разъём micro-USB. Адаптер имеет вилку европейского типа, плоский лёгкий корпус малых габаритов, и позиционируется как переносное устройство для путешествий:


Внешний вид и разъёмы сетевого адаптера

По надписям на корпусе, адаптер выдаёт 5 В при токе 700 мА, и работоспособен при входном напряжении сети 100 — 240 В с частотой 50/60 Гц. В дальнейшем будет выяснен реальный возможный ток нагрузки, и представлена нагрузочная характеристика с максимальной выходной мощностью.

Разборка адаптера

производится очень легко, снятием единственной небольшой крышки, которая просто приклеена, и её легко можно поддеть ножом. Устройство недорогое, так что о шурупах и винтах не может быть и речи. Для дальнейшей сборки её снова придётся приклеивать. У данного устройства был повреждён шнур в месте выхода наружу, и периодически терялся контакт во время зарядки телефона. Было решено устранить эту маленькую неисправность, а заодно и изучить устройство блока питания:


Устройство со снятой крышкой

За крышкой сразу видно установленную в пазах плату, которую можно вытащить, ухватившись за неё пинцетом или пассатижами — тянуть за шнур не рекомендуется — под изоляционной оболочкой могут возникнуть разрывы отдельных проводников, так как они довольно тонкие. Сама плата в корпусе, кроме уже снятой крышки, удерживается контактами сетевой вилки, которая изнутри имеет пружинящие зажимы, передающие сетевое напряжение контактным площадкам на плате:


Пружинящие контакты-зажимы с внутренней стороны сетевой вилки

После разборки адаптера, выходной шнур был отпаян для ремонта, и начато изучение устройства. Печатная плата блока питания, выполнена односторонним омеднением с двухсторонним расположением радиокомпонентов, и имеет небольшие размеры. Все крупные и выводные элементы установлены сверху, а со стороны токопроводящих участков припаяны элементы поверхностного монтажа. Хотя некоторые компоненты и наклонены, весь монтаж выполнен ровно и красиво, а места пайки довольно чистые, но кое-где всё же наблюдаются остатки прозрачного флюса:


Внешний вид печатной платы адаптера с радиокомпонентами

Далее, по рисунку печатной платы и расположению радиокомпонентов, была зарисована и переведена в цифровой формат, принципиальная схема устройства, которая представлена на картинке ниже. Сетевое напряжение, через вилку европейского типа, подаётся на контактные площадки платы, с которых поступает на токоограничивающий резистор R1 и однополупериодный выпрямитель на диоде D1. После этого, пульсирующее напряжение сглаживается высоковольтным электролитическим конденсатором C5, и подаётся на обратноходовой преобразователь автогенераторного типа, выполненный на импульсном трансформаторе Tr1 и транзисторе Q1 обратной проводимости.

Рекомендуем:  Как подключить розетку к алюминиевой проводке

На транзисторе Q2 собрана цепь отрицательной обратной связи, как по току, так и по напряжению, часть которой составляет оптрон OC1, светодиод которого в свою очередь, через токоограничивающий резистор R8 и стабилитрон D4, подключён к выходу блока питания, тем самым осуществляя стабилизацию выходного напряжения, которое снимается со вторичной обмотки трансформатора, выпрямляется диодом Шоттки D2 и сглаживается электролитическим конденсатором C4. Уровень выходного напряжения, кроме количества витков обмоток трансформатора и прочих параметров преобразователя, зависит от напряжения стабилизации используемого стабилитрона, которое складывается с падением напряжения на оптроне порядка 1,4 Вольт, и задаёт значение напряжения на выходе устройства. На резисторе R8 также падает некоторое напряжение, но оно довольно мало по сравнению с общим падением напряжения на стабилитроне и оптроне.

Обмотка III трансформатора осуществляет положительную обратную связь по переменному току, и обеспечивает напряжение для отрицательной обратной связи по постоянному. В схеме так же имеется высоковольтный конденсатор E-типа C6, для компенсации влияния межобмоточной ёмкости импульсного трансформатора. Для наглядности и во избежание путаницы, обозначения и нумерация на созданной принципиальной схеме, соответствуют маркировке на печатной плате устройства:


Принципиальная электрическая схема простого импульсного блока питания

Устройства по таким схемам не боятся перегрузок по току и короткого замыкания в цепи нагрузки, их легко собирать и налаживать, а себестоимость таких адаптеров очень низкая из-за использования недорогих и доступных компонентов, притом в довольно небольшом числе — проще может быть только на одном или двух транзисторах с посредственной стабилизацией выходного напряжения. Пишите в комментариях, что ещё можно добавить, что бы усовершенствовать эту схему, и как можно улучшить показатели, собранного по этой схеме устройства.

Испытание адаптера под нагрузкой

Для снятия нагрузочной характеристики преобразователя в целом, к его выходу, через многофункциональный измеритель, был подключён проволочный подстроечный резистор низкого сопротивления. Изменяя сопротивление резистора, и тем самым меняя так же и ток, протекающий через него, проводились наблюдения за уровнем выходного напряжения, при разных значениях тока нагрузки. На холостом ходу, а так же при токе до значения 400 мА, уровень выходного напряжения находился в допустимых пределах 5 Вольт ±10%. После дальнейшего увеличения тока нагрузки, значение напряжения резко упало, и при токе 500 мА опустилось до уровня 3 Вольт, ниже которого заряд нормального литий-ионного аккумулятора не происходит:


Значение выходного напряжения при различном токе нагрузки

Из выше проведённых тестов, можно сделать вывод что адаптер не выдаёт заявленных 700 мА и может начинать зарядку полностью разряжённого аккумулятора током лишь в 500 мА, а по мере накопления заряда, этот ток будет только уменьшаться. На основании полученных данных был создан график, наглядно отображающий зависимость выходного напряжения рассматриваемого адаптера от тока нагрузки. На протяжённости всего времени тестирования, при различных токах нагрузки от меньшего до максимально возможного, выходная мощность не превышала 2 Ватт. Это не очень много, но всё же её вполне достаточно для большинства радиолюбительских целей, таких как питание различных самоделок и зарядка не очень ёмких аккумуляторов. А в случае необходимости выходную мощность всегда можно повысить заменой трансформатора и силового транзистора, а ещё будет хорошо, если установить полноценный диодный мост на входе и увеличить ёмкость фильтрующего конденсатора. В подобных преобразователях встречались так же силовые транзисторы MJE13003 и MJE13005, а в место обычного, можно установить программируемый стабилитрон TL431, тем самым увеличив коэффициент стабилизации и диапазон установки выходного напряжения устройства:


График зависимости выходного напряжения адаптера от тока нагрузки

Нагрузочные способности рассмотренного адаптера, с некоторыми допущениями можно приравнивать к способностям обычного стандартного USB-порта компьютера, и к нему можно подключать нагрузку, обычно питающуюся от такого порта. Зарядить современный смартфон этим адаптером хотя и возможно, но это займёт довольно много времени, поэтому лучше всё же согласовывать потребитель электроэнергии с его источником и не превышать реальные нагрузочные характеристики последнего.

После завершения проверки и тестирования, повреждённый выходной кабель был укорочен и восстановлен, а его конец припаян на своё место к контактным площадкам платы. Далее плата обратно устанавливается в пластиковый корпус и приклеивается верхняя крышка:


Простой импульсный блок питания на двух транзисторах в разобранном виде

Кому лень читать статью, может посмотреть короткий видеоролик, по сути почти дублирующий её. Так же посещайте другие страницы сайта и смотрите

Статьи по теме:

Источник

Adblock
detector