Ардуино включение света от датчика движения

Про датчик движения и подключение его к Arduino

Опубликовано: 25.10.2016 19:00

Всем привет, сегодня мы рассмотрим устройство под названием датчик движения. Многие из нас слышали об этой штуке, кто то даже имел дело с этим устройством. Что же такое датчик движения? Попробуем разобраться, итак:

Датчик движения, или датчик перемещения — устройство (прибор) обнаруживающий перемещение каких либо объектов. Очень часто эти устройства, используются в системах охраны, сигнализации и мониторинга. Форм факторов этих датчиков существует великое множество, но мы рассмотрим именно модуль датчика движения для подключения к платам Arduino, и именно от фирмы RobotDyn. Почему именно этой фирмы? Я не хочу заниматься рекламой этого магазина и его продукции, но именно продукция данного магазина была выбрана в качестве лабораторных образцов благодаря качественной подаче своих изделий для конечного потребителя. Итак, встречаем — датчик движения (PIR Sensor) от фирмы RobotDyn:

Эти датчики малы по габаритам, потребляют мало энергии и просты в использовании. Кроме того — датчики движения фирмы RobotDyn имеют еще и маркированные шелкографией контакты, это конечно мелочь, но очень приятная. Ну а тем кто использует такие же датчики, но только других фирм, не стоит беспокоиться — все они имеют одинаковый функционал, и даже если не промаркированы контакты, то цоколёвку таких датчиков легко найти в интернете.

Основные технические характеристики датчика движения(PIR Sensor):

Зона работы датчика: от 3 до 7 метров

Угол слежения: до 110 о

Рабочее напряжение: 4,5. 6 Вольт

Потребляемый ток: до 50мкА

Примечание: Стандартный функционал датчика можно расширить, подключив на пины IN и GND датчик освещенности, и тогда датчик движения будет срабатывать только в темноте.

Инициализация устройства.

При включении, датчику требуется почти минута для инициализации. В течение этого периода, датчик может давать ложные сигналы, это следует учесть при программировании микроконтроллера с подключенным к нему датчиком, или в цепях исполнительных устройств, если подключение производится без использования микроконтроллера.

Угол и область обнаружения.

Угол обнаружения(слежения) составляет 110 градусов, диапазон расстояния обнаружения от 3 до 7 метров, иллюстрация ниже показывает всё это:

Регулировка чувствительности(дистанции обнаружения) и временной задержки.

На приведённой ниже таблице показаны основные регулировки датчика движения, слева находится регулятор временной задержки соответственно в левом столбце приведено описание возможных настроек. В правом столбце описание регулировок расстояния обнаружения.

Подключение датчика:

  • PIR Sensor[PIN GND] — Arduino Nano[PIN GND]
  • PIR Sensor[PIN 5V] — Arduino Nano[PIN 5V]
  • PIR Sensor[PIN OUT] — Arduino Nano[PIN A0]
  • PIR Sensor[PIN IN] — для датчика освещенности
  • PIR Sensor[PIN GND] — для датчика освещенности

Типичная схема подключения дана на схеме ниже, в нашем случае датчик показан условно с тыльной стороны и подключен к плате Arduino Nano.

Скетч демонстрирующий работу датчика движения(используем программу Serial Monitor Pro):

Скетч является обычной проверкой работы датчика движения, в нём есть много недостатков, таких как:

  1. Возможные ложные срабатывания, датчику необходима самоинициализация в течение одной минуты.
  2. Жесткая привязка к монитору порта, нет выходных исполнительных устройств(реле, сирена, светоиндикация)
  3. Слишком короткое время сигнала на выходе датчика, при обнаружении движения необходимо программно задержать сигнал на более долгий период времени.

Усложнив схему и расширив функционал датчика, можно избежать вышеописанных недостатков. Для этого потребуется дополнить схему модулем реле и подключить обычную лампу на 220 вольт через данный модуль. Сам же модуль реле будет подключен к пину 3 на плате Arduino Nano. Итак принципиальная схема:

Теперь пришло время немного усовершенствовать скетч, которым проверялся датчик движения. Именно в скетче, будет реализована задержка выключения реле, так как сам датчик движения имеет слишком короткое время сигнала на выходе при срабатывании. Программа реализует 10-ти секундную задержку при срабатывании датчика. При желании это время можно увеличить или уменьшить, изменив значение переменной DelayValue . Ниже представлен скетч и видео работы всей собранной схемы:

В программе присутствует конструкция:

unsigned long prevMillis = 0;

int interval = 1000;

unsigned long currMillis = millis();

if(currMillis — prevMillis > interval)

// Наши операции заключенные в тело конструкции

Чтобы внести ясность, было решено отдельно прокомментировать эту конструкцию. Итак, данная конструкция позволяет выполнить как бы параллельную задачу в программе. Тело конструкции срабатывает примерно раз в секунду, этому способствует переменная interval. Сначала, переменной currMillis присваивается значение возвращаемое при вызове функции millis(). Функция millis() возвращает количество миллисекунд прошедших с начала программы. Если разница currMillis — prevMillis больше чем значение переменной interval то это означает, что уже прошло более секунды с начала выполнения программы, и нужно сохранить значение переменной currMillis в переменную prevMillis затем выполнить операции заключенные в теле конструкции. Если же разница currMillis — prevMillis меньше чем значение переменной interval, то между циклами сканирования программы еще не прошло секунды, и операции заключенные в теле конструкции пропускаются.

Ну и в завершение статьи видео от автора:

Источник

Управление сценариями освещения с помощью Arduino

Причины появления этого проекта по сути две. Одна — это систематически перегорающие лампы в прихожей. Вторая — это имеющийся опыт работы с системами автоматизации на базе промышленных программируемых контроллеров (проектирование систем АОВ, АХС, АСДУ и т. д.) и желание применить эти знания во благо своих домочадцев.

Как вы уже наверно догадались, речь пойдет об автоматическом управлении освещением, но поскольку просто включать свет по датчику движения скучно и не современно, инженерная мысль привела меня к следующему варианту: автоматическое управление сценариями освещения (дневным и ночным) с возможностью как ручного так и дистанционного переключения режимов.

Думаю начать стоит со схемы, и дальше вносить в неё пояснения.

Также наглядным будет план помещения.

Итак в прихожей созданы 2 сценария освещения, дневной со светодиодной лентой на потолке и ночной, со светодиодной лентой на уровне пола. Оба режима управляются с помощью двух датчиков движения находящихся над дверью и рядом с зеркалом, как это видно из плана. Изначально был установлен только один датчик движения над дверью, но к моему удивлению периодически свет выключался при наличии людей в помещении. Оказалось что датчик не способен уловить небольшие манипуляции совершаемые у зеркала, тем более если объект находится к нему спиной и создает перед собой слепую зону. Вторым открытием для меня стало что некоторые люди, могут проводить у зеркала больше 1-2 минут ( мне обычно хватает секунд 15). Первое решение, пришедшее в голову — это поставить более продвинутый датчик присутствия наподобие Esylux + реле, но стоимость подобного оборудования превысила бы стоимость всего остального проекта, по этому был выбран более простой вариант, установить второй датчик движения для «слепых зон».

Датчик движения был собран из модуля HC-SR501 + распаечная коробка.


Алгоритм работы датчиков будет представлен в коде, но в двух словах для включения света достаточно срабатывания одного из датчиков, для выключения необходимо отсутствие сигнала от обоих.

Для потолка была выбрана лента SMD 5050, 300 светодиодов на 5 метров ( 12V 72W). Одноцветная с тепло-желтым оттенком. Лента включается через релейный модуль.

Для ночной подсветки была выбрана лента SMD 5050 RGB, 150 светодиодов на 5 метров. Задействуется только синий цвет ( меньше проводов) Управление через транзисторный модуль L298N ( обратите внимание на инверсию выходного сигнала в данном модуле значение 255 в программе будет выключать светодиоды). Яркость ленты выставлена на минимальную, чтобы не слепить глаза.


Выбор режима освещения дневной/ночной осуществляется либо кнопочным переключателем на стене, либо пультом дистанционного управления с одинаковым приоритетом. Программно это реализуется по принципу работы проходного выключателя.

Корпус контроллера, реле и Транзисторного модуля я решил сделать сам из распаечной коробки, закрепив все оборудование на печатной плате, получилось вполне надежно. Сама коробка закрепляется на DIN рейку. На обратной стороне платы для уменьшения количества проводов есть спаянные соединения, также в плату припаяны клеммные колодки для вводного питания 12В, которым запитываются как сам контроллер так и ленты.


Ниже, код программы для Ардуино.

Эта схема освещения работает у меня уже полгода, в целом устраивает своей функциональностью. Конечно, появляются идеи по модернизации, в частности, хотелось бы заменить пульт ДУ с инфракрасного на радио. Добавить несколько радиоуправляемых розеток. Также добавить веб-интерфейс для управления с мобильных устройств. Сторонние сервисы мне кажутся недостаточно надежными. В данный момент уже работает включение, выключение и индикация наличия движения, но это уже другая история.

Источник

Ардуино: инфракрасный датчик движения, ПИР

Тема сегодняшнего урока — датчик движения на основе пироэлектрического эффекта (PIR, passive infrared motion sensor). Такие датчики часто используются в охранных системах и в быту для обнаружения движения в помещении. Например, на принципе детектирования движения основано автоматическое включение света в подъезде или в ванной. Пироэлектрические датчики достаточно простого устроены, недороги и неприхотливы в установке и обслуживании.

Кстати сказать, существуют и другие способы детектирования движения. Сегодня всё чаще используют системы компьютерного зрения для распознавания объектов и траектории их перемещения. В тех же охранных системах применяются лазерные детекторы, которые дают тревожный сигнал при пересечении луча. Также используются тепловизионные датчики, способные определить движение только живых существ.

Принцип действия пироэлектрических датчиков движения

Пироэлектрики — это диэлектрики, которые создают электрическое поле при изменении их температуры. На основе пироэлектриков делают датчики измерения температуры, например, LHI778 или IRA-E700. Каждый такой датчик содержит два чувствительных элемента размером 1×2 мм, подключенных с противоположной полярностью. И как мы увидим далее, наличие именно двух элементов поможет нам детектировать движение.

Вот так выглядит датчик IRA-E700 компании Murata.

На этом уроке мы будем работать с датчиком движения HC-SR501, в котором установлен один такой пироэлектрический датчик. Сверху пироэлектрик окружен полусферой, разбитой на несколько сегментов. Каждый сегмент этой сферы представляет собой линзу, которая фокусирует тепловое излучение на разные участки ПИР-датчика. Часто в качестве линзы используют линзу Френеля.

Принцип работы датчик движения следующий. Предположим, что датчик установлен в пустой комнате. Каждый чувствительный элемент получает постоянную дозу излучения, а значит и напряжение на них имеет постоянное значение (левый рисунок).

Как только в комнату заходит человек, он попадает сначала в зону обзора первого элемента, что приводит к появлению положительного электрического импульса на нем (центральный рисунок).

Человек движется, и его тепловое излучение через линзы попадает уже на второй PIR-элемент, который генерирует отрицательный импульс. Электронная схема датчика движения регистрирует эти разнонаправленные импульсы и делает выводы о том, что в поле зрения датчика попал человек. На выходе датчика генерируется положительный импульс (правый рисунок).

Настройка HC-SR501

На этом уроке мы будем использовать модуль HC-SR501. Этот модуль очень распространен и применяется во множестве DIY проектов в силу своей дешевизны.

У датчика имеется два переменных резистора и перемычка для настройки режима. Один из потенциометров регулирует чувствительность прибора. Чем она больше, тем дальше «видит» датчик. Также чувствительность влияет на размер детектируемого объекта. К примеру, можно исключить из срабатывания собаку или кошку.

Второй потенциометр регулирует время срабатывания T. Если датчик обнаружил движение, он генерирует на выходе положительный импульс длиной T.

Наконец, третий элемент управления — перемычка, которая переключает режим датчика. В положении L датчик ведет отсчет Т от самого первого срабатывания. Допустим, мы хотим управлять светом в ванной комнате. Зайдя в комнату, человек вызовет срабатывание датчика, и свет включится ровно на время Т. По окончании периода, сигнал на выходе вернется в исходное состояние, и датчик будет дать следующего срабатывания.

В положении H датчик начинает отсчет времени T каждый раз после обнаружения движения. Другими словами, любое шевеление человека вызовет обнуление таймера отсчета Т. По-умолчанию, перемычка находится в состоянии H.

Подключение HC-SR501 к Ардуино Уно

Для соединения с микроконтроллером или напрямую с реле у HC-SR501 имеется три вывода. Подключаем их к Ардуино по следующей схеме:

HC-SR501 GND VCC OUT
Ардуино Уно GND +5V 2

Принципиальная схема

Внешний вид макета

Программа

Как уже было сказано, цифровой выход датчика HC-SR501 генерирует высокий уровень сигнала при срабатывании. Напишем простую программу, которая будет отправлять в последовательный порт «1» если датчик увидел движение, и «0» в противном случае.

Загружаем программу на Ардуино и проверяем работу датчика. Можно покрутить настройки датчика и посмотреть как это отразится на его работе.

Управление светом при помощи датчика движения

Следующий шаг — система автоматического включения света. Для того, чтобы управлять освещением в помещении, нам потребуется добавить в цепь реле.

Будем использовать модуль реле с защитой на основе опторазвязки, о котором мы уже писали в одном и уроков ( урок про реле ).

Внимание! Данная схема зажигает лампу от сети 220 Вольт. Рекомендуется семь раз проверить все соединения, прежде чем соединять схему с бытовой электросетью.

Принципиальная схема

Внешний вид макета

Программа

Теперь напишем программу, которая будет при срабатывании датчика включать реле, а следовательно и освещение в комнате.

Загружаем программу на Ардуино, аккуратно подключаем схему к бытовой сети и проверяем работу датчика.

Заключение

Датчики движения окружают нас повсюду. Благодаря охранным системам, их можно встретить практически в каждом помещении. Как мы выяснили, они очень просты в использовании и могут быть легко интегрированы в любой проект на Ардуино или Raspberry Pi.

Вот несколько ситуаций и мест, где может пригодиться датчик движения:

  • автоматическое включение света в подъезде дома, в ванной комнате и туалете, перед входной дверью в помещение;
  • сигнализация в помещении и во дворе;
  • автоматическое открывание дверей;
  • автоматическое включение охранной видеокамеры.

Как уже говорилось в самом начале, существуют и другие способы детектирования движения. О них мы поговорим на следующих уроках!

Источник

Adblock
detector