Ардуино теплица gsm

Умная теплица на базе arduino из подручного материала с регулятором температуры

Дорогие читатели представляю вашему вниманию детский проект под моим руководством «Smart greenhouse».

Данному проекту уже три года, но он полностью функционирует и до сих пор даёт урожай в домашних условиях.

Техническая структура теплицы

Материал – картон, пластик прозрачный и не прозрачный, пищевая плёнка, удобрение.

Электронная начинка – Arduino Uno, DC двигатель (водяная помпа), светодиоды, двухканальный модуль реле 5В, керамический нагреватель, кулер, блок питания на 12 В и 60 Вт, датчик влажности почвы, датчик температуры и влажности воздуха.

Как показало время — выбранный материал оправдал все идеи.
В качестве ёмкостей для выращивания урожая использовали коробки из под обуви (мужская детская обувь).
Коробки были покрыты изнутри акриловой краской, которую часто используют в декоративных целях. После высыхания краски, каждая коробка было покрыта изнутри и снаружи пищевой плёнкой. Коробки прикручены к фанере, которая является соединительной опорой двух коробок. Для прочности конструкции, фасад теплицы был обклеен пластиковыми футлярами из под CD дисков (набралось огромное количество не нужного софта, музыки и фильмов). Клей использовали двух видом — клей момент кристалл для крепления к коробкам термоклей для заливки места стыков пластика.

Для того, чтобы было освещение в любую погоду построили рамку, где закрепили светодиоды (лучше ультрафиолетовые) — расстояние между ними не более 5 см на высоте не менее 25 см. Рамка создана из пластиковых уголков, которых полно в строительных магазинах.

К данной рамке закрепили пластиковую трубку диаметром 1,5 см (дети принесли, от какой то конструкции), где просверлили множество отверстий (до 3мм в диаметре) с одной стороны трубки, расстояние между отверстиями не менее 3 см.

Так как растениям нужен ультрафиолет, и его очень много от естественного освещения, то принято решение сделать прозрачные стенки. Так как стекло поглощает ультрафиолет, взяли пластик от тех же футляров из под компакт дисков.

Так как растения могут быть разной высоты, то одну из сторон было решено сделать выше на один футляр. Крышка также сделана из футляров и спокойно может открываться.

Для скрепления применяли те же клеи, что описаны были ранее. Для прочности к краям приклеены деревянные рейки, купленные в строительных магазинах.

Места стыка крышки и стенок покрыли теплоизоляцией — получилось немного коряво, но я старался не вмешиваться в процесс творчества детей — это их проект и они должны получить личный опыт в разработке проекта.

Теперь настало время проектировки электроники в теплицу.

Задачи

Разработка структуры «Умной теплицы»

Разработка ПО по ручному управлению и автономной работе проекта, отвечающего поставленным задачам.

Электромонтаж проекта «Умная теплица» — автономное и автоматическое отслеживание состояния влажности почвы и воздуха, температуры воздуха в теплице, автоматический полив (увлажнение) почвы и нагрев воздуха до комфортной, растениям, температуры, автоматическое освещение.

Разработка модели с возможностью реализации её любому человеку и для любых природных условиях по выращиванию растений любого вида.

Возможности модели

Автоматическое управление освещением

Автоматическое управление поливом.

Автоматическое регулировка температуры и влажности воздуха и почвы.

  • Описание принципа работы

    Датчики влажности почвы и датчик температуры и влажности воздуха каждую секунду отслеживают показания. Данные показания обрабатываются в плате Arduino Uno и выдаются команды согласно загруженной в неё программе.

    Программа содержит два условия и бесконечный цикл. Если температура воздуха меньше 20 градусов по Цельсию, то подаётся команда на включение через электромагнитное реле керамического нагревателя и кулера. Под действием конвекции воздух начинает равномерно прогреваться, когда воздух прогреется до 21 градуса по Цельсию, то подаётся команда на отключения нагревателя через реле.

    Если влажность почвы будет выше установленного значения, то также подаётся команда на реле, где запускается насос для полива растений и увлажнения почвы, пока не понизится до нужного значения.

    В данном проекте есть керамический нагреватель — его мы прикрутили к радиатору с кулером, чтобы нагретый воздух быстрее циркулировал. По идеи в помещении для большинства растений он не нужен, за исключением тропических видов.

    На видео показана работа теплицы

    На сегодняшний день теплица выполняет свою функцию, хорошо получается вырастить капризные растения. Сейчас идёт модернизация её управления и улучшения качества.

    Всё дорожает и фрукты с овощами тоже. Выращенный томат, огурцы и сладкий перец намного вкуснее магазинных. Очень насыщенный вкус. Попробуйте, не пожалеете.

    Больше интересных проектов можно посмотреть здесь.

    Источник

    Делаем умную теплицу на Ардуино своими руками

    Автоматизация вездесуща. Различные механизмы создают комфортные температурные условия, помогают при готовке пищи, ухаживают за одеждой, включают и гасят свет, а также поддерживают чистоту помещения. Но использование их не ограничивается бытом человека. Вообще во всем окружении, на улице или производстве, при перевозках чего-либо, в магазинах или сельском хозяйстве — везде работают незримые помощники.

    С развитием технологической базы вырастает и уровень автоматизации. Сейчас роботы или механизмы выполняют не просто последовательность заложенных действий. Их устройство теперь позволяет осуществлять своеобразный «выбор», в зависимости от изменившихся внешних условий. Самый простой пример — стиральная машина. Ее внутренняя начинка определяет температуру воды и при необходимости подогревает ее, следит за временем стирки и правильностью текущих циклов выполнения.

    Кроме уже описанного, в нашу жизнь вошли «умные» дома, города, кварталы или улицы. Главное отличие их от обычных — присутствие взаимосвязанных между собой систем управления. Каждая из которых контролирует одно устройство из присутствующих в комплексе. Но, работу всех их определяет общая система, отправляя сведения необходимые для функционирования или указывающие команды.

    Одной из относительно редко использующихся схем интеллектуального управления можно назвать применение его в сельском хозяйстве, а конкретно для полной автоматизации парников или аппаратуры ухода за растениями. Собственно, как может быть подготовлена и собрана умная теплица на Ардуино своими руками будет рассказано далее. Сделать это вполне по силам и относительно разбирающемуся в электронике человеку.

    Общие сведения об управляющих системах

    Интеллектуальность современного оборудования обеспечивается микроконтроллерами. Это небольшие и ограниченные по ресурсам полноформатные компьютеры, зачастую размещенные на одной плате или микросхеме. Несмотря на свои маленькие размеры их мощности вполне достаточно для того, чтобы управлять различным оборудованием. Информацию, необходимую для выполнения своих функций, такие микрокомпьютеры получают посредством различных специализированных датчиков. Общее нахождение устройств в единой сети обеспечивается посредством дополнительных присоединяемых к микроконтроллеру модулей.

    Выполняя свою программу, интеллектуальные устройства, выдают управляющие импульсы на исполняющие цепи включающие двигатели, насосы, нагреватели или любые другие устройства для управления которыми и создается вся система.

    Основой многих из подобных комплексов составляют контроллеры серии Arduino, STM, Ti MSP430, Netduino, Teensy, Particle Photon, ESP8266 или иных распространенных плат такого типа в мире. Кроме того, некоторые специалисты создают свои варианты микро — компьютеров, управляющих оборудованием — на основе устаревших ПК или каких-либо 8 разрядных процессоров, к примеру, Z80.

    Чего бы хотелось

    Наибольшее желание любого огородника — получать максимальный урожай при минимальных затратах труда. Одним из вариантов решения этой проблемы становятся теплицы. Но и в таком случае хочется, чтобы в ней самостоятельно грядки поливались, освещались, и обогревались, когда нужно. Ну и конечно, была организована автоматическая система вентиляции, для минимизации усилий по открыванию и закрыванию форточек.

    Если для вас данный функционал слишком большой, то можно собрать автоматический полив в теплице своими руками, тогда вам не придется сильно углубляться в программирование и разработку.

    Мониторинг и настройка

    Конечно, в первую очередь, требуется система управления всем этим высокоинтеллектуальным хозяйством. Кроме того, желательно получение информации о текущем состоянии напрямую или на домашний компьютер, или на смартфон. С этой целью будет использоваться контроллер для теплицы на Arduino.

    Управление

    В соответствии с желаниями, необходимо организовать автоматическое управление отоплением пола (как основы подогрева посадок), открытия форточек, увлажнением почвы. Хороша будет система контроля освещения, которая зажигает его, если на улице темно.

    Где купить

    Приобрести оборудование для умных теплиц можно как в специализированном магазине, так и онлайн в Интернет-магазине. Во втором случае, особого внимания заслуживает бюджетный вариант приобретения изделий на сайте Алиэкспресс. Для некоторых товаров есть вариант отгрузки со склада в РФ, их можно получить максимально быстро, для этого при заказе выберите «Доставка из Российской Федерации»:

    Реализация в «железе»

    Ничего сложного в реализации проекта нет. Достаточно применить плату Arduino, в комплексе с несколькими датчиками (влажности, температуры, освещенности, наполнения бака полива и концевых контактов окон проветривания), а также парой двигателей для вентиляции и смонтировать систему «теплый пол».

    Но сначала требуется сделать саму теплицу. Для основы была создана такая модель:

    Вот ее перенос в реальность:

    Мониторинг и настройка

    Визуализация информации, а также пункты меню настройки выводятся на LCD1602 дисплей, с конвертором в IIC/I2C UC-146 для подключения его к Arduino.

    Для выбора параметров используются 4 клавиши. Все это вместе желательно разместить в общем контрольном ящике.

    Кроме визуального, для удаленного контроля будет использоваться модуль WIFI связи ESP8266 LoLin NodeMCU2, с помощью которого информация с использованием UDP протокола будет передаваться на домашний компьютер с настроенным web-сервером и базой данных. Которые впоследствии, можно будет получить на любом устройстве в общей сети — смартфоне, цифровом телевизоре или планшете.

    Подключаться модуль к ардуино уно будет через серийный порт (RX/TX). Причем электрический контакт производится напрямую TX(модема)-TX(Arduino) и RX аналогично. Почему это важно — зачастую рекомендуют делать соединение перекрестным RX-TX. В прилагаемой схеме это не нужно.

    Полив

    Система полива работает на основе физических принципов и насоса, который функционирует определенное время. Периодом и началом которого управляет Ардуино. С утра бак наполняется водой, что ограничивается временем в управляющем скетче и датчиком на прилагаемом чертеже. В течение дня она прогревается воздухом в теплице. Вечером происходит кратковременное включение насоса, который слегка переполнив емкость запускает полив самотеком.

    Так он выглядит в реальности (вместе с системой подачи воды на грядки):

    Его схема работы:

    Ночью бачок стоит пустым, чтобы в случае отключения обогрева и падения температуры воздуха ниже нуля его не сломало замерзшей водой.

    Отопление

    Подогрев земли сделан предварительной укладкой «теплого» пола под будущие грядки. Включение происходит через специальное реле на 30 А, так как мощности выдаваемой ардуино никогда в жизни бы не хватило для питания такого потребителя.

    Кроме него используется обычный бытовой нагнетатель теплого воздуха, который позволяет нагреть внутреннее пространство теплицы. Он также подсоединяется к микроконтроллеру.

    Вентиляция

    Для обеспечения движения воздуха предусмотрены два поворотных окна, процесс открытия и закрытия которых выполняется двигателями от автомобильных дворников. В свою очередь, подключённых к Arduino.

    Освещение

    Чтобы обеспечить растения постоянным притоком света, используются китайские светодиодные ленты, которые включаются в зависимости от таймера и уровня освещенности.

    На приведенной ниже схеме оно подключается к выводам резерв (освещение).

    Управляющая электрическая схема

    Ну и конечно самая главная часть — принципиальная схема «мозгов» всей этой конструкции.

    Маленькое примечание: мощности для обогревателей (воздуха и почвы) у реле Arduino не хватает. Дополнительно к ним используются в качестве посредников токовые, высокоамперные варианты, подключаемые уже непосредственно к потребителям.

    Программная часть

    С оборудованием все понятно. Осталось разобраться с программами, которые им управляют и контролируют состояние всей системы. Так как в комплексе есть два высокоинтеллектуальных устройства — ESS8266 и сам Arduino. Соответственно для обоих нужны свои программы. Помещение их в память устройств, в обоих случаях производится через Arduino IDE.

    Мониторинг

    Скетч, который необходимо выгрузить в ESP8266 LoLin NodeMCU, для обеспечения его связи с Arduino и WiFi роутером.

    Управление

    Ну и в финале, большой скетч управления самой теплицей, который выгружается в Arduino.

    Замечания по конструкции

    Датчик DN11 желательно заменить на DN22, который хоть и стоит дороже, но более точен и функционирует без проблем свойственных своему младшему тезке. Для питания контуров управления можно использовать компьютерный блок питания, желательно форм-фактора AT.

    Советуем прочитать: переходите по ссылке, если хотите узнать как подключить датчик влажности почвы к Arduino.

    Заключение

    Как видно из всего выше сказанного создать у себя на участке умную теплицу не так уж и сложно. Какие-то элементы можно убрать, что-то можно добавить, но после проделанной работы важно одно — вы получите у себя на участке функциональную теплицу, которая будет вас радовать урожаем и сама за собой следить, вам останется только провести посадку и ждать урожая.

    Видео по теме

    Источник

    Adblock
    detector