Arduino rfid считывание

Урок 6. Arduino считываем метки (RFID-модуль RC522)

Подключение к Arduino:

Для начала необходимо установить библиотеку RFID Library for MFRC522.

Контакты на модуле RFID-модуль RC522 необходимо подключить к Ардуине. Для подключения удобно использовать провода папа-мама.

Описание контактов у RFID-модуля RC522:

  • VCC — Питание. Необходимо 3.3V;
  • RST — Reset. Линия сброса. Ни в коем случае не подключать к пину RESET на CraftDuino! Данный пин цепляется на цифровой порт с PWM;
  • GND — Ground. Земля
  • MISO — Master Input Slave Output — данные от ведомого к ведущему, SPI;
  • MOSI — Master Output Slave Input — данные от ведущего к ведомому, SPI;
  • SCK — Serial Clock — тактовый сигнал, SPI;
  • NSS — Slave Select — выбор ведомого, SPI;
  • IRQ — линия прерываний;
MFRC522 Arduino Uno Arduino Mega Arduino Nano v3 Arduino Leonardo/Micro Arduino Pro Micro
RST 9 5 D9 RESET/ICSP-5 RST
SDA(SS) 10 53 D10 10 10
MOSI 11 (ICSP-4) 51 D11 ICSP-4 16
MISO 12 (ICSP-1 ) 50 D12 ICSP-1 14
SCK 13 (ICSP-3) 52 D13 ICSP-3 15
3.3V 3.3V 3.3V Стабилизатор 3,3В Стабилизатор 3,3В Стабилизатор 3,3В
GND GND GND GND GND GND

В комплекте с модулем RFID-RC522 идут две метки, одна в виде пластиковой карточки, а вторая в виде брелка. При необходимости их можно докупить отдельно.

После того как все будет подключено на модуле будет гореть индикатор, это говорит о том что питание поступает на RFID . Пришло время запустить пробный скетч который находится в библиотеке которую мы установили.

Необходимо проверить правильность заданных констант:

Теперь загружаем скетч в ардуину и включаем Мониторинг последовательного порта.

Подносим метку к ридеру и модуль считает все данные с данной метки, например уникальный идентификатор метки UID.

Видео работы RFID-RC522:

Источник

Как подключить RFID считыватель RC522 к Arduino

В этой статье мы рассмотрим подключение к Arduino считывателя карт и брелоков RFID RC522, работающего на частоте 13,56 МГц.

  • Arduino (или совместимая плата);
  • считыватель RFID RC522;
  • беспроводная RFID метка (идёт в комплекте по ссылке выше) или бесконтактный билет на метро/наземный транспорт;
  • макетная плата;
  • соединительные провода (вот такие);
  • компьютер с Arduino IDE.

Инструкция по подключению считывателя беспроводных радиометок RFID-RC522 к Arduino

1 Описание считывателяRFID RC522

Модуль RFID-RC522 выполнен на микросхеме MFRC522 фирмы NXP. Эта микросхема обеспечивает двухстороннюю беспроводную (до 6 см) коммуникацию на частоте 13,56 МГц.

Беспроводной модуль RFID-RC522

Микросхема MFRC522 поддерживает следующие варианты подключения:

Интерфейс Скорость передачи
SPI (Serial Peripheral Interface, последовательный интерфейс для связи периферийных устройств) до 10 Мбит/сек;
двухпроводной интерфейс I 2 C до 3400 кбод в режиме High-speed,
до 400 кбод в режиме Fast;
последовательный UART (аналог RS232) до 1228,8 кбод.

С помощью данного модуля можно записывать и считывать данные с различных RFID-меток: брелоков от домофонов, пластиковых карточек-пропусков и билетов на метро и наземный транспорт, а также набирающих популярность NFC -меток.

2 Схема подключения RFID-RC522 к Arduino

Подключим модуль RFID-RC522 к Arduino по интерфейсу SPI по приведённой схеме.

Схема подключения RFID-RC522 к Arduino по интерфейсу SPI

Питание модуля обеспечивается напряжением от 2,5 до 3,3 В. Остальные выводы подключаем к Arduino так:

Пин RC522 Пин Arduino
RST D9
SDA (SS) D10
MOSI D11
MISO D12
SCK D13

Не забывайте также, что Arduino имеет специальный разъём ICSP для работы по интерфейсу SPI. Его распиновка также приведена на иллюстрации. Можно подключить выводы RST, SCK, MISO, MOSI и GND модуля RC522 к разъёму ICSP на Ардуино.

3 Библиотека для работы Arduino с RFID

Микросхема MFRC522 имеет достаточно обширную функциональность. Познакомиться со всеми возможностями можно изучив её техническое описание (приложено внизу статьи). Мы же для знакомства с возможностями данного устройства воспользуемся одной из готовых библиотек, написанных для работы Arduino с RC522. Скачайте её и распакуйте в директорию Arduino IDE\libraries\

Установка библиотеки «rfid-master» для работы Arduino с RFID-метками

После этого запустите среду разработки Arduino IDE.

4 Скетч для считывания информации, записанной на RFID-метке

Теперь давайте откроем скетч из примеров: Файл Образцы MFRC522 DumpInfo и загрузим его в память Arduino.

Открываем скетч DumpInfo

Данный скетч определяет тип приложенного к считывателю устройства и считывает данные, записанные на RFID-метке или карте, а затем выводит их в последовательный порт.

Текст скетча достаточно хорошо прокомментирован.

Для более полного знакомства с библиотекой изучите файлы MFRC522.h и MFRC522.cpp из директории rfid-master.

5 Дамп данных с RFID-метки

Запустим монитор последовательного порта сочетанием клавиш Ctrl+Shift+M , через меню Инструменты или кнопкой с изображением лупы. Теперь приложим к считывателю билет метро или любую другую RFID-метку. Монитор последовательного порта покажет данные, записанные на RFID-метку или билет.

Считываем данные с билета на наземный транспорт и метро с помощью RFID

Например, в моём случае здесь зашифрованы уникальный номер билета, дата покупки, срок действия, количество оставшихся поездок, а также служебная информация. Мы разберём в одной из будущих статей, что же записано на карты метро и наземного транспорта.

Примечание

Да, с помощью модуля RFID-RC522 можно записать данные на билет метро. Но не обольщайтесь, каждая карта имеет неперезаписываемый счётчик циклов записи, так что «добавить» поездок себе на метро не получится – это сразу будет обнаружено и карта будет забракована турникетом :) А вот использовать билеты метро для записи на них небольших объёмов данных – от 1 до 4 кб – можно. И способы применения этому ограничены только вашей фантазией.

Источник

Ардуино и RFID

RFIDRadio Frequency IDentification или радиочастотная идентификация — способ автоматической идентификации объектов, в котором при помощи радиосигналов считываются или записываются данные, хранящиеся в так называемых транспондерах, или RFID-метках.

Любая RFID-система состоит из считывающего устройства (ридера) и RFID-метки.

Большинство RFID-меток состоит из двух частей. Первая — интегральная схема (ИС) для хранения и обработки информации, модулирования и демодулирования радиочастотного (RF) сигнала и некоторых других функций. Вторая — антенна для приёма и передачи сигнала.

Идентификация объектов производится по уникальному цифровому коду, который считывается из памяти RFID-метки.

По дальности считывания RFID-системы можно подразделить на системы:

  • ближней идентификации (считывание производится на расстоянии до 20 см);
  • идентификации средней дальности (от 20 см до 5 м);
  • дальней идентификации (от 5 м до 300 м).

RFID метки подразделяются на три типа в зависимости от частотного диапазона:

  • метки диапазона LF (125—134 кГц);
  • метки диапазона HF (13,56 МГц);
  • метки диапазона UHF (860—960 МГц).

В повседневной жизни мы постоянно используем RFID-системы — домофоны, допуск на охраняемую территорию, контроль за посещаемостью рабочих мест, управление устройствами — это всё примеры RFID. Разобравшись, как устроены RFID-системы, вы сможете сделать собственный проект, например, систему контроля доступа в школе.

В этом уроке мы научимся подключать RFID-ридер RC522 к Ардуино Уно и считывать данные с RFID-меток. Модуль RC522 имеет дальность обнаружения до 6 см и предназначен для чтения и записи RFID меток с частотой 13.56 МГц.

Источник

● Проект 28: Считыватель RFID на примере RC522. Принцип работы, подключение

В этом эксперименте мы покажем, как плата Arduino получает доступ к данным RFID-карт и брелоков Mifare с помощью RFID-считывателя RC522C.

Необходимые компоненты:

Радиочастотная идентификация (RFID) – это технология автоматической бесконтактной идентификации объектов при помощи радиочастотного канала связи. Базовая система RFID состоит из:

• радиочастотной метки;
• считывателя информации (ридера);
• компьютера для обработки информации.

Идентификация объектов производится по уникальному цифровому коду, который считывается из памяти электронной метки, прикрепляемой к объекту идентификации. Считыватель содержит в своем составе передатчик и антенну, посредством которых излучается электромагнитное поле определенной частоты. Попавшие в зону действия считывающего поля радиочастотные метки «отвечают» собственным сигналом, содержащим информацию (идентификационный номер товара, пользовательские данные и т. д.). Сигнал улавливается антенной считывателя, информация расшифровывается и передается в компьютер для обработки. Подавляющее большинство современных систем контроля доступа (СКД) использует в качестве средств доступа идентификаторы, работающие на частоте 125 кГц. Это проксимити-карты доступа (только чтение), самыми распространенными являются карты EM-Marin, а также HID, Indala. Карты этого стандарта являются удобным средством открывания дверей и турникетов. Но не более. Эти карты не обладают никакой защищенностью, легко копируются и подделываются и, соответственно, ничего не дают для защиты объекта от несанкционированного проникновения.

Настоящую защиту от копирования и подделки обеспечивают такие идентификаторы, в чипах которых реализована криптографическая защита. Это бесконтактные смарт-карты, работающие на частоте 13,56 МГц, наиболее распространенными из них являются карты Mifare®. В картах этих стандартов криптозащита организована на высоком уровне, и подделка таких карт практически невозможна.

Модуль RC522 – RFID-модуль 13,56 МГц с SPI-интерфейсом. В комплекте к модулю идут 2 RFID-метки – в виде карты и брелока.

Основные характеристики:

• основан на микросхеме MFRC522;
• напряжение питания: 3,3 В;
• потребляемый ток: 13–26 мА;
• рабочая частота: 13,56 MГц;
• дальность считывания: 0

60 мм;
• интерфейс: SPI, максимальная скорость передачи 10 МБит/с;
• размер: 40×60 мм;
• чтение и запись RFID-меток.

Схема подключения модуля к плате Arduino показана на рис. 28.1.

Напишем скетч считывания с карты и вывода в последовательный порт Arduino UID (уникальный идентификационный номер) RFID-метки (карты или брелока). При написании скетча будем использовать библиотеку MFRC522 (https://github.com/miguelbalboa/rfid). Содержимое скетча показано в листинге 28.1.

Порядок подключения:

1. Подключаем модули RFID-считывателя RC522 к плате Arduino по схеме на рис. 28.1.
2. Загружаем в плату Arduino скетч из листинга 28.1. Открываем монитор последовательного порта.
3. Подносим метку (карту или брелок) к считывателю и видим вывод в последовательный порт данных метки UID и тип (рис. 28.2).

Метки Mirafe позволяют записывать на них информацию. В следующем скетче мы организуем на карте счетчик, который будет инкрементироваться при поднесении карты к считывателю. В последовательный порт будем выводить показания счетчика. Содержимое скетча показано в листинге 28.2.

Порядок подключения:

Источник

Что такое RFID? Как это работает? Взаимодействие RFID модуля RC522 с Arduino

Давно прошли те времена, когда люди стояли и ждали в длинных кассовых очередях в продуктовом магазине. Но теперь, благодаря технологии радиочастотной идентификации (RFID, Radio Frequency IDentification), с помощью решений на базе RFID вы можете заполнить корзину и выйти прямо за дверь. Вам больше не придется ждать, пока кассир пробьет каждый товар в вашей корзине по отдельности. Вместо этого RFID метки, прикрепленные к предметам, будут связываться с RFID считывателем, который будет обнаруживать каждый товар в корзине и пробивать его практически мгновенно.

Что такое RFID? Как это работает? Взаимодействие RFID модуля RC522 с Arduino

Для большинства наших проектов на Arduino отличным выбором будет RFID модуль чтения/записи RF522. Он обладает низким энергопотреблением, низкой стоимостью, он довольно прочный, прост для взаимодействия и безумно популярен среди любителей.

Что такое технология RFID и как она работает?

RFID или система радиочастотной идентификации состоит из двух основных компонентов: транспондера или метки, прикрепленной к идентифицируемому объекту, и приемопередатчика, также известного как интеррогатор (interrogator) или считыватель.

Рисунок 1 – Как работает технология RFID

Считыватель состоит из радиочастотного модуля и антенны, которая генерирует высокочастотное электромагнитное поле. Метка, напротив, обычно является пассивным устройством, то есть она не содержит батареи. Вместо этого она содержит микрочип, который хранит и обрабатывает информацию, и антенну для приема и передачи сигнала.

Для считывания информации, закодированной в метке, она размещается в непосредственной близости от считывателя (она не обязательно должна находиться в пределах прямой видимости от считывателя). Считыватель генерирует электромагнитное поле, которое заставляет электроны проходить через антенну метки и обеспечивать чип питанием.

Рисунок 2 – Как работает технология RFID

Обеспеченная питанием микросхема внутри метки затем отвечает отправкой своей сохраненной информации обратно считывателю в виде другого радиосигнала. Это называется обратным рассеянием (backscatter). Обратное рассеяние или изменение электромагнитной/радиочастотной волны обнаруживается и интерпретируется считывателем, который затем отправляет данные на компьютер или микроконтроллер.

Обзор аппаратного обеспечения — Модуль чтения / записи RF522 RFID

RFID модуль RC522 на основе микросхемы MFRC522 от NXP – это один из самых недорогих вариантов RFID, который вы можете найти в интернете менее чем за четыре доллара. Обычно он поставляется с картой RFID метки и брелоком с объемом памяти 1 КБ. И что лучше всего, он может записать метку, чтобы вы могли хранить в ней свое секретное сообщение.

Модуль считывателя RFID RC522 предназначен для создания электромагнитного поля на частоте 13,56 МГц, которое он использует для связи с метками RFID (стандартные метки ISO 14443A). Считыватель может взаимодействовать с микроконтроллером через 4-контактный последовательный периферийный интерфейс (SPI) с максимальной скоростью передачи данных 10 Мбит/с. Он также поддерживает связь по протоколам I2C и UART.

У модуля имеется вывод прерывания. Это удобно потому, что вместо того, чтобы постоянно опрашивать RFID модуль «есть ли карта в поле зрения?», модуль сам предупредит нас, когда метка окажется рядом.

Рабочее напряжение модуля составляет от 2,5 до 3,3 В, но хорошая новость заключается в том, что логические выводы допускают напряжение 5 вольт, поэтому мы можем легко подключить его к Arduino или любому микроконтроллеру с 5-вольтовой логикой без использования какого-либо преобразователя логических уровней.

Характеристики RFID модуля RC522

Частотный диапазон 13,56 МГц, ISM диапазон
Интерфейс SPI / I2C / UART
Рабочее напряжение питания от 2,5 В до 3,3 В
Максимальный рабочий ток 13-26 мА
Минимальный ток (отключение питания) 10 мкА
Логические входы допускают 5 В
Расстояние считывания 5 см

Распиновка RFID модуля RC522

Модуль RC522 имеет всего 8 контактов, соединяющих его с внешним миром.

Рисунок 4 – Распиновка RFID модуля считывателя RC522

VCC обеспечивает питание для модуля. Напряжение питания может быть в диапазоне от 2,5 до 3,3 вольт. Вы можете подключить его к выходу 3.3V вашей платы Arduino. Помните, что подключение его к выводу 5V, скорее всего, выведет модуль из строя!

RST – вход для сброса и отключения питания. Когда на этот вывод подается низкий логический уровень, запускается жесткое отключение питания. Оно отключает всех внутренних потребителей тока, включая генератор, и входные выводы отключаются от внешних цепей. Во время нарастающего фронта на этом выводе модуль сбрасывается.

GND вывод земли, должен быть подключен к выводу GND на Arduino.

IRQ – вывод прерывания, который может предупредить микроконтроллер, когда поблизости будет RFID метка.

Вывод MISO / SCL / Tx действует либо как Master-In-Slave-Out (вход ведущего – выход ведомого) при включенном интерфейсе SPI, либо как последовательный тактовый сигнал при включенном интерфейсе I2C, либо как выход последовательных данных при включенном интерфейсе UART.

MOSI (Master Out Slave In) – вход SPI для модуля RC522.

SCK (Serial Clock) принимает тактовые импульсы, предоставляемые мастером на шине SPI, то есть Arduino.

Вывод SS / SDA / Rx действует либо как вход, когда включен интерфейс SPI, либо как линия последовательных данных, когда включен интерфейс I2C, либо как вход последовательных данных, когда включен интерфейс UART. Этот вывод обычно помечается заключением в квадрат, чтобы его можно было использовать в качестве опорной точки для идентификации других выводов.

Подключение RFID модуля RC522 к Arduino UNO

Теперь, когда мы знаем всё о модуле, мы можем подключить его к нашей плате Arduino!

Для начала подключите вывод VCC на модуле к выводу 3,3V на Arduino, а вывод GND — к земле Arduino. Вывод RST может быть подключен к любому цифровому выводу на Arduino. В нашем случае он подключен к цифровому выводу 5. Вывод IRQ не подключен, так как библиотека Arduino, которую мы собираемся использовать, не поддерживает его.

Теперь у нас остаются выводы, которые используются для связи по SPI. Поскольку модуль RC522 требует передачи больших данных, то наилучшая производительность будет обеспечена при использовании аппаратного модуля SPI в микроконтроллере. Использование выводов аппаратного SPI модуля намного быстрее, чем «дергание битов» в коде при взаимодействии через другой набор выводов.

Обратите внимание, что у плат Arduino выводы SPI различаются. Для плат Arduino, таких как UNO/Nano V3.0, это цифровые выводы 13 (SCK), 12 (MISO), 11 (MOSI) и 10 (SS).

Если у вас Arduino Mega, выводы отличаются! Вы должны использовать цифровые выводы 50 (MISO), 51 (MOSI), 52 (SCK) и 53 (SS). В таблице ниже приведен список выводов для связи по SPI для разных плат Arduino.

Список выводов для связи по SPI для разных плат Arduino

MOSI MISO SCK CS
Arduino Uno 11 12 13 10
Arduino Nano 11 12 13 10
Arduino Mega 51 50 52 53

В случае если вы используете плату Arduino, отличную от приведенных выше, рекомендуется проверить официальную документацию Arduino, прежде чем продолжить.

Рисунок 5 – Подключение модуля RFIDсчитывателя RC522 к Arduino UNO

Как только вы всё подключите, вы готовы к работе!

Код Arduino. Считывание RFID метки

Связь с RFID модулем RC522 – это сложная работа, но, к счастью для нас, есть библиотека MFRC522, которая упрощает чтение и запись в RFID меток. Спасибо Мигелю Бальбоа. Сначала скачайте библиотеку, посетив репозиторий GitHub, или просто нажмите на кнопку ниже, чтобы скачать архив:

Чтобы установить библиотеку, откройте Arduino IDE, перейдите в Скетч → Подключить библиотеку → Добавить .ZIP библиотеку и выберите только что загруженный файл rfid-master.zip .

После установки библиотеки откройте меню Файл → Примеры → MFRC522 → DumpInfo .

Рисунок 6 – Скетч DumpInfo библиотеки MFRC522

Этот скетч не будет записывать какие-либо данные в метку. Он просто сообщает вам, удалось ли ему прочитать метку, и отображает некоторую информацию о ней. Это может быть очень полезно, прежде чем опробовать любую новую метку!

Перейдите к началу скетча и убедитесь, что RST_PIN инициализирован правильно, в нашем случае мы используем цифровой вывод 5, поэтому измените его на 5!

Рисунок 7 – Изменение вывода RST в примере скетча

Хорошо, теперь загрузите скетч в Arduino и откройте монитор последовательного порта. Как только вы приблизите метку к модулю, вы, вероятно, получите что-то вроде следующего. Не двигайте метку, пока не отобразится вся информация.

Рисунок 8 – Вывод скетча DumpInfo

Он отображает всю полезную информацию о метке, включая уникальный идентификатор (UID) метки, объем памяти и содержание всей памяти в 1 КБ.

Распределение памяти MIFARE Classic 1K

Память метки 1 КБ организована в 16 секторов (от 0 до 15). Каждый сектор дополнительно делится на 4 блока (блоки 0–3). Каждый блок может хранить 16 байтов данных (от 0 до 15).

Это говорит нам, что у нас точно

16 секторов x 4 блока x 16 байтов данных = 1024 байта = 1 КБ памяти

Весь 1 килобайт памяти с секторами, блоками и данными показан ниже.

Рисунок 9 – Вывод скетча DumpInfo. Структура памяти Рисунок 10 – Трехмерное представление структуры памяти MIFARE Classic 1K

Блок 3 каждого сектора называется Sector Trailer и содержит информацию, называемую Access Bits (биты доступа), для предоставления доступа на чтение и запись к остальным блокам в секторе. Это означает, что в каждом секторе на самом деле для хранения данных доступны только 3 нижних блока (блоки 0, 1 и 2), а это означает, что в 64 байтовом секторе у нас есть только 48 байтов, доступных для нашего собственного использования.

Блок 0 сектора 0 также известен как Manufacturer Block / Manufacturer Data содержит данные производителя микросхемы и уникальный идентификатор (UID). Блок производителя выделен ниже красным цветом.

Рисунок 11 – Вывод скетча DumpInfo. Блок производителя

Предупреждение: перезаписывать блок производителя очень рискованно, и это может навсегда заблокировать карту.

Код Arduino. Запись в RFID метку

Учитывая, что вы успешно прочитали RFID метку, пора перейти к следующему эксперименту. В следующем скетче будет показана простая демонстрация записи пользовательских данных в RFID метку. Протестируйте скетч, прежде чем мы начнем его подробный разбор.

Вывод в мониторе последовательного порта будет выглядеть следующим образом.

Рисунок 12 – Вывод скетча записи RFID метки с помощью RC522

Объяснение кода:

Скетч начинается с включения библиотек MFRC522 и SPI, определения выводов Arduino, к которым подключен RC522, и создания объекта считывателя MFRC522.

Далее нам нужно определить блок, в котором мы собираемся хранить наши данные. Здесь выбран сектор 0, блок 2. Помните, никогда не выбирайте блок 3 в любом секторе. Запись в блок Sector Trailer может сделать блок непригодным для использования.

Далее мы определяем массив из 16 байтов с именем blockcontent[16] , который содержит сообщение, которое мы хотим записать в блок. Вы можете удалить любой блок, написав в него нули.

Далее нам нужно определить массив из 18 байтов с именем readbackblock[18] . Он может быть использован для чтения контента обратно. Подождите . 18 байт? Разве не должно быть 16 байтов? Ответ — нет. Метод MIFARE_Read в библиотеке MFRC522 для хранения 16 байтов блока требует буфер размером не менее 18 байтов.

В функции setup() мы инициализируем последовательную связь с ПК, библиотеку SPI и объект MFRC522. Нам также необходимо подготовить ключ безопасности для функций чтения и записи. Здесь все шесть байтов ключа установлены в 0xFF . Поскольку карты в наборе новые, и их ключи никогда не менялись, они равны 0xFF . Если бы у нас была карта, которая была запрограммирована кем-то другим, нам нужно было бы знать ключ, чтобы получить к ней доступ. Затем этот ключ необходимо будет хранить в переменной key .

В функции loop() мы сначала сканируем, есть ли поблизости карта, если да, эта карта выбирается для записи и чтения.

Записать блок теперь очень просто, нам просто нужно вызвать пользовательскую функцию writeBlock() , которая принимает два параметра: номер блока, в который мы хотим записать данные, и сами данные.

Чтобы проверить, была ли операция записи успешной, нам нужно прочитать содержимое блока обратно. Это можно сделать с помощью пользовательской функции readBlock() , которая снова принимает два параметра: один — номер блока, а другой — массив для хранения содержимого блока. Вы можете использовать функцию PICC_DumpToSerial() , если хотите увидеть весь 1 килобайт памяти с записанным в нее блоком.

Наконец, мы печатаем содержимое массива readbackblock с помощью цикла for и отображаем его в мониторе последовательного порта.

Проект на Arduino

RFID система контроля доступа для дверного замка

Давайте создадим небольшой проект на Arduino, чтобы продемонстрировать, как простой модуль RFID считывателя RC522 можно использовать для создания RFID системы контроля доступа для дверного замка. Наша программа будет сканировать уникальный идентификатор каждой RFID метки, когда она достаточно близко, чтобы запитываться от считывателя RC522. Если UID метки соответствует предопределенному значению ( MasterTag ), которое хранится в памяти Arduino, доступ будет предоставлен. И если сканируем любую неизвестную метку, доступ будет запрещен. Круто! Так ведь?

Так выглядит результат.

Рисунок 13 – Демонстрация работы RFID системы контроля доступа для дверного замка

Конечно, этот проект можно привязать к открытию дверей, включению реле, включению светодиода или к чему-то еще.

Если вы не знакомы с символьными LCD дисплеями размером 16×2, то взгляните на эту статью.

Прежде чем мы перейдем к загрузке кода и сканированию меток, давайте посмотрим на принципиальную схему проекта.

Рисунок 14 – RFID система контроля доступа для дверного замка. Подключение RFID считывателя RC522 и LCD дисплея к Arduino

Всё! Теперь попробуйте приведенный ниже скетч в работе.

Программа довольно проста. Сначала мы включаем необходимые библиотеки, определяем выводы Arduino, создаем объекты LCD и MFRC522 и определяем главную метку.

В функции setup() мы инициализируем интерфейс SPI, объект MFRC522 и LCD дисплей. После этого мы печатаем на LCD дисплее приветственное сообщение.

В функции loop() мы ждем, пока не будет отсканирована новая метка. Как только это будет сделано, мы сравним неизвестную метку с мастер-меткой, определенной в функции setup() . Всё! Если ID метки совпадает с ID мастера, доступ предоставляется, в противном случае в доступе будет отказано.

Ключевым моментом в проекте является пользовательская функция getID() . Как только она просканирует новую карту, внутри цикла for она преобразует 4 байта UID в строки и объединяет их для создания одной строки.

Источник

Adblock
detector