Arduino работа с динамиком

Arduino для начинающих. Урок 6. Подключение пьезоэлемента

Продолжаем серию уроков “Arduino для начинающих”. Сегодня собираем модель с пьезоэлементом (динамиком), которые используются в робототехники для управления звуками, издаваемыми роботом. В статье вы найдете видео-инструкцию, листинг программы, схему подключения и необходимые компоненты.

Пьезоэлемент — электромеханический преобразователь, одним из разновидностей которого является пьезоизлучатель звука, который также называют пьезодинамиком, просто звонком или английским buzzer. Пьезодинамик переводит электричеcкое напряжение в колебание мембраны. Эти колебания и создают звук (звуковую волну).

В нашей модели частоту звука можно регулировать, задавая соответствующие параметры в программе. Такая модель может быть встроена в робота, который будет издавать звуки.

Видео-инструкция сборки модели:

Для сборки модели с пьезоэлементом нам потребуется:

  • плата Arduino
  • провода “папа-папа”
  • пьезоэлемент
  • программа Arduino IDE, которую можно скачать с сайта Arduino.

Что потребуется для подключения динамика на Arduino?

Схема подключения модели Arduino с пьезоэлементом:

Схема подключения пьезоэлемента (динамика) на Arduino

Для работы этой модели подойдет следующая программа (программу вы можете просто скопировать в Arduino IDE):

int p = 3; //объявляем переменную с номером пина, на который мы
//подключили пьезоэлемент
void setup() //процедура setup
<
pinMode(p, OUTPUT); //объявляем пин как выход
>
void loop() //процедура loop
<
tone (p, 500); //включаем на 500 Гц
delay(100); //ждем 100 Мс
tone(p, 1000); //включаем на 1000 Гц
delay(100); //ждем 100 Мс
>

Так выглядит собранная модель Arduino с пьезоэлементом:

Собранная модель подключения динамика на Arduino

После сборки модели попробуйте поменять в программе частоты звука и посмотрите, как изменится работа модели.

Смотрите также:

Посты по урокам:

Все посты сайта «Занимательная робототехника» по тегу Arduino.

Наш YouTube канал, где публикуются видео-уроки.

Не знаете, где купить Arduino? Все используемые в уроке комплектующие входят в большинство готовых комплектов Arduino, их также можно приобрести по отдельности. Подробная инструкция по выбору здесь. Низкие цены, спецпредложения и бесплатная доставка на сайтах AliExpress и DealExtreme. Если нет времени ждать посылку из Китая — рекомендуем интернет-магазины Амперка и DESSY. Низкие цены и быструю доставку предлагает интернет-магазин ROBstore. Смотри также список магазинов.

Источник

Динамики ардуино. Подключение динамиков к Arduino.

Для одного из проектов мне понадобилось вывести звук с Ардуино, как можно проще и бюджетнее. Можно было бы использовать пищалку, но у неё не такой диапазон частот, да и громкости маловато. Поэтому я решил подключить динамик.

Моей задачей было создать разные генераторы звуковых частот(эффектов). Как можно проще и по возможности разнообразнее.

А ещё подключенный динамик может выводить звуковые файлы. Для этого надо установить библиотеку PCM или TMRpcm. Но сразу скажу, что это в разы сложнее, и вам придётся готовить звуковые файлы определённым способом.
Гораздо лучше использовать DFPLAYER Mini. Это и проще и не грузит микроконтроллер. Как использовать плеер можно посмотреть здесь.

Скетч, как он работает и какие звуковые эффекты можно получить я покажу в конце.
Обычно в этом месте я показываю видео того что получилось, но сегодня я решил отойти от этой традиции, и сразу показать схему подключения.
Если вы когда-нибудь подключали пищалку к Ардуино, то, наверное, знаете, что её можно подключать как к контактам с Широтно-импульсной модуляцией, или по другому ШИМ или PWM, так и к обычным цифровым входам. А ещё для пищалки есть функция tone(). Кто хочет подробнее узнать, как подключать BUZZER, то советую посмотреть вот это видео.
Динамик надо подключать несколько иначе. Его не желательно, хотя и возможно, подключать напрямую к Ардуино.
Правильная схема подключения вот такая. Динамик подключается через транзистор. Транзистор можно использовать практически любой, NPN серии. Я обычно использую BC337, но можно использовать 2N2222.

Давайте сначала посмотрим, что получилось, а потом для тех кому интересно, я покажу как подключать динамик. Я помолчу, и мы просто послушаем.
Если есть мазохисты кто прослушал всё полностью, то напишите в комментариях.
Просто меняя значения, мы меняем звук. А я вас предупреждал. Как видите можно создать любой звуковой эффект, что мне и было нужно.

Про скетч я рассказывать не буду. Он очень короткий и не представляет интереса для сегодняшней темы. Думаю, что если захотите, то разберётесь сами.
Изменение звука происходит вот в этом цикле. Точнее не звука, а изменение длительности пауз между включением и выключением динамика, и количество срабатываний. Пауза высчитывается вот по этой сложной формуле. В цикле loop находится несколько функций, которые я подобрал и использовал в своём проекте. В каждой функции два параметра. Изменяя их вы сможете менять тональность.
Вот такой небольшой урок получился. Теперь вы знаете как подключить динамик к Ардуино, и поверьте это гораздо интереснее чем использовать пищалку.

Теперь давайте всё же посмотрим что получилось и как звучит динамик.

Если вам интересна эта тема, то я могу снять продолжение этого видео. Объём вашего интереса, я буду оценивать по количеству лайков и комментариев. Чем их будет больше, тем быстрее выйдет новое видео.
Ну, а если вам нравятся мои уроки, то ставьте лайк и делитесь моими видео, с другими. Это очень поможет мне в продвижении канала, а меня будет стимулировать выпускать уроки чаще и интереснее.
Вы видите ссылки на видео, которые, я думаю будут вам интересны. Перейдя на любое из этих видео вы узнаете что-то новое, а ещё поможете мне. Ведь любой ваш просмотр — это знак YOUTUBE, что это кому-то интересно и что его надо показывать чаще.
Спасибо.
А пока на этом всё.

Источник

Динамик

Ардуино: динамик

На самых первых уроках мы познакомились со светодиодами, которые часто используются в электронике как индикаторы состояния. Самым простым примером может служить индикатор питания, с помощью которого прибор сообщает пользователю, что он включен. Очень часто вместе со световой индикацией, в устройствах применяется звуковая индикация. Во многих электронных приборах есть источник звука, который как и световой индикатор помогает пользователю в работе.

Обычно в электронике используются два типа источников звука:

  • громкоговоритель (динамик);
  • звукоизлучатель (зуммер).

В этом уроке мы поговорим о динамике. Разберем подробно его устройство и попробуем проиграть мелодию на Ардуино!

Громкоговоритель, он же динамик

Все громкоговорители можно разделить на два подтипа: электродинамический и пьезоэлектрический. Именно от названия первого подтипа пошло хорошо известное нам название динамик.

Наверное каждый из нас хотя бы раз в жизни разбирал какой-нибудь старый динамик. Внутри него обязательно есть постоянный магнит, который прочно склеен с металлическим диском и цилиндрическим якорем по середине.

Кроме магнита в динамике еще есть небольшая электромагнитная (или звуковая) катушка, намотанная тонким лакированным проводом. Катушка приклеена к гофрированному подвесу и к диффузору. Все эти части изображены на схеме разреза динамика.

Человеку, знакомому со школьным курсом физики не составит труда догадаться как работает это устройство. Мы знаем, что если подать на звуковую катушку напряжение, то в её витках возникнет электрический ток (ну это уж совсем очевидно). Согласно закону Ампера, на проводник с током, находящийся в магнитном поле будет действовать сила Ампера.

Направление этой силы можно легко вычислить с помощью правила левой руки: если вектор манитного поля направлен в ладонь, а пальцы направлены по току (вдоль витков провода), то большой палец будет указывать направление силы. Именно сила Ампера то притягивает катушку к основанию якоря, то отталкивает от него, в зависимости от направления электрического тока.

То есть подавая на катушку переменный ток, мы заставим её колебаться. Звуковая катушка прочно соединена с диффузором, так что он тоже начнет колебаться. Движение же большого диффузора приведёт к колебанию большой массы воздуха, что мы и называем звуковой волной!

Источник

Пьезоизлучатель

Внешний вид Fritzing Условное обозначение на схеме

Пьезоизлучатель может называться по разному — пищалка, зумер, piezo buzzer или speaker. Суть одна — издать звук.

Обычно в наборах идут два вида пищалок — активный и пассивный. Они похожи и новичка ставят в тупик. Давайте разбираться.

Активный зуммер имеет сверху наклейку с таинственной надписью «Remove seal after washing», которую Гугл-переводчик переводит весьма странно — «снять пломбу после мытья», ещё больше запутывая пользователя. Не обращайте внимания на надпись, это просто технический момент. Во время изготовления детали требуется промывка от флюса, но чтобы не повредить вещь, заклеивают отверстие сверху. Но не торопитесь отклеивать и выбрасывать наклейку, она вам пригодится.

Активный зумер может работать самостоятельно, достаточно просто подать питание. При подключении следут следить за полярностью. На наклейке есть значок плюса (+), но доверять наклейке не стоит, может кто-то не очень аккуратно её наклеил. Лучше посмотрите на ножки. Как правило, одна ножка длиннее другой. Длинная ножка — плюс, короткая — минус. Соедините длинную ножку к питанию 5В, а короткую к земле. Вы сразу услышите противный звук. Именно по этой причине я советовал вам не отклеивать наклейку. Если вы теперь удалите наклейку, то громкость звука станет намного выше. Заклейте немедленно обратно!

Пассивный зумер внешне похож, но всё-таки отличается немного. Сравните их по размерам, а также посмотрите на их снизу. Разница видна. При подключении как из прошлого примера с активным динамиком, вы ничего не услышите. Просто подать питание не достаточно, нужно использовать программные методы, которые есть в составе В Arduino.

Также встречаются в модульном исполнении, например, KY-006 (пассивный) или KY-012 (активный). У модуля три вывода, средний не используется, вывод S соединяется с цифровым выводом платы, а вывод с GND.

KY-006 KY-012

Переходим к программной части. Активный зумер пищит громче и отчётливее, пассивный немного грубовато.

Самый простой способ — подать напряжение на нужный вывод.

При запуске услышим щелчки.

Для более интересных звуков используется функция tone().

Одну ноту играть не интересно. Пусть будет массив из десяти нот.

Если управлять не только нотами, но и их продолжительностью, то можно писать мелодии. Говорят, следующая мелодия воспроизводит «Имперский марш» из «Звёздных войн».

02.Digital: toneMelody (Играем мелодию)

Рассмотрим пример из меню File | Examples | 2.Digital | toneMelody. Обратите внимание, что программа состоит из двух вкладок toneMelody и pitches.h. Файл pitches.h содержит константы для проигрывания звуков различной тональности. Сам файл находится в одной папке с скетчем.

После того, как мы наигрались со светом при помощи светодиодов, пора поиграть со звуком. Для примера нам понадобится пьезоизлучатель, макетная плата и три провода.

Собирается конструкция очень просто — от вывода 8 ведём провод к одному контакту пищалки, а второй контакт присоединяем к GND.

Запустите скетч. Вы услышите мелодию, которая прозвучит один раз. Если вы хотите послушать её ещё раз, то нажмите на кнопку Reset на вашей плате.

В первой строчке мы подключаем заголовочный файл pitches.h при помощи оператора #include. Далее создаётся массив из нот, а также массив из продолжительности проигрывания ноты. Потом идёт цикл, где для каждой ноты вычисляется его продолжительность и вызывается функция tone(), которая и воспроизводит нужный звук. Обратите внимание, что весь код находится в методе setup(), поэтому программа выполняется один раз.

Вот так мы быстро познакомились с новым устройством — пьезоизлучателем, а также научились извлекать мелодию.

Melody

Нашёл ещё один пример с пищалкой.

Пример использует вывод 8.

02.Digital: tonePitchFollower

Ещё один простой пример File | Examples | 02.Digital | tonePitchFollower для извлечения звуков, который зависит от освещённости — вы можете проводить рукой над датчиком освещённости, создавая тем самым разные значения, которые передаются на динамик. В примере упоминается 9-омный динамик, но мы можем использовать и свой пьезоизлучатель.

Источник

Проигрывание мелодий с помощью функции Tone() на Arduino

Платформа Arduino в настоящее время стала очень популярной по всему миру, во многом благодаря тому что ее сообществом разработано множество полезных библиотек для работы с различными электронными компонентами. Иногда вам в свои проекты хочется добавить некоторые звуки чтобы сделать их более выразительными. Поэтому в данной статье мы рассмотрим как легко и просто проигрывать мелодии на пьезоэлектрическом зуммере (Piezo Buzzer) или динамике с помощью функции Tone() на Arduino. В конце данной статьи вы сможете проигрывать на Arduino такие известные мелодии как, например, Pirates of Caribbean, Crazy Frog, Super Mario and Titanic. Вы также научитесь проигрывать любой участок музыки с пианино. Более подробно все описанные процессы в статье можно посмотреть в видео, приведенном в конце статьи.

Необходимые компоненты

Плата Arduino Uno (или любая другая версия платы Arduino)
Пьезоэлектрический динамик/зуммер или любой другой 8-омный динамик
Макетная плата
Соединительные провода
Кнопки
Резистор 1 кОм (опционально)

Принципы работы функции Tone() в Arduino

Прежде чем рассматривать функцию Tone() сначала рассмотрим как работает пьезоэлектрический зуммер (Piezo Buzzer). По сути, это кристалл, который преобразует механические колебания в электрические или наоборот. В этом проекте мы используем переменный ток (частоту) под действием которой кристалл вибрирует и, таким образом, производит звук. То есть чтобы заставить пьезоэлектрический зуммер издавать какой-нибудь шум (звук), мы должны заставить его вибрировать, тон этого звука будет зависеть от того как быстро кристалл вибрирует. То есть тоном звука можно управлять с помощью частоты подаваемого на кристалл тока.

А каким образом мы можем получить переменную частоту в плате Arduino? И здесь как раз на помощь приходит функция tone (). Эта функция позволяет генерировать определенную частоту на заданном контакте. Можно регулировать и время генерации частоты если это необходимо. Синтаксис функции tone () выглядит следующим образом:

Синтаксис
tone(pin, frequency)
tone(pin, frequency, duration)
Параметры
pin: контакт, на котором необходимо генерировать частоту (тон)
frequency: частота тона в герцах — unsigned int
duration: продолжительность тона в миллисекундах (опционально) — unsigned long

В качестве pin может выступать любой цифровой контакт платы Arduino. Мы в нашем проекте использовали контакт 8. Генерируемая частота зависит от размера таймера в вашей плате Arduino. Для Arduino Uno и других подобных ей плат минимальная частота звука составляет 31 Гц, а максимальная – 65535 Гц. Диапазон воспринимаемых ухом обычного человека частот значительно меньше.

Заголовочный файл pitches.h

Теперь мы знаем как генерировать звуки с помощью функции tone(). Но как узнать какой вид тона будет генерироваться на каждой частоте? Для этой цели в Arduino есть специальная таблица нот, которая приравнивает каждую частоту к определенному типу музыкальной ноты. Эта таблица нот первоначально была написана Бреттом Хангманом (Brett Hagman), на чьих трудах и была основана работа функции tone(). Мы будем использовать эту таблицу нот чтобы проигрывать наши мелодии.

#define NOTE_B0 31
#define NOTE_C1 33
#define NOTE_CS1 35
#define NOTE_D1 37
#define NOTE_DS1 39
#define NOTE_E1 41
#define NOTE_F1 44
#define NOTE_FS1 46
#define NOTE_G1 49
#define NOTE_GS1 52
#define NOTE_A1 55
#define NOTE_AS1 58
#define NOTE_B1 62
#define NOTE_C2 65
#define NOTE_CS2 69
#define NOTE_D2 73
#define NOTE_DS2 78
#define NOTE_E2 82
#define NOTE_F2 87
#define NOTE_FS2 93
#define NOTE_G2 98
#define NOTE_GS2 104
#define NOTE_A2 110
#define NOTE_AS2 117
#define NOTE_B2 123
#define NOTE_C3 131
#define NOTE_CS3 139
#define NOTE_D3 147
#define NOTE_DS3 156
#define NOTE_E3 165
#define NOTE_F3 175
#define NOTE_FS3 185
#define NOTE_G3 196
#define NOTE_GS3 208
#define NOTE_A3 220
#define NOTE_AS3 233
#define NOTE_B3 247
#define NOTE_C4 262
#define NOTE_CS4 277
#define NOTE_D4 294
#define NOTE_DS4 311
#define NOTE_E4 330
#define NOTE_F4 349
#define NOTE_FS4 370
#define NOTE_G4 392
#define NOTE_GS4 415
#define NOTE_A4 440
#define NOTE_AS4 466
#define NOTE_B4 494
#define NOTE_C5 523
#define NOTE_CS5 554
#define NOTE_D5 587
#define NOTE_DS5 622
#define NOTE_E5 659
#define NOTE_F5 698
#define NOTE_FS5 740
#define NOTE_G5 784
#define NOTE_GS5 831
#define NOTE_A5 880
#define NOTE_AS5 932
#define NOTE_B5 988
#define NOTE_C6 1047
#define NOTE_CS6 1109
#define NOTE_D6 1175
#define NOTE_DS6 1245
#define NOTE_E6 1319
#define NOTE_F6 1397
#define NOTE_FS6 1480
#define NOTE_G6 1568
#define NOTE_GS6 1661
#define NOTE_A6 1760
#define NOTE_AS6 1865
#define NOTE_B6 1976
#define NOTE_C7 2093
#define NOTE_CS7 2217
#define NOTE_D7 2349
#define NOTE_DS7 2489
#define NOTE_E7 2637
#define NOTE_F7 2794
#define NOTE_FS7 2960
#define NOTE_G7 3136
#define NOTE_GS7 3322
#define NOTE_A7 3520
#define NOTE_AS7 3729
#define NOTE_B7 3951
#define NOTE_C8 4186
#define NOTE_CS8 4435
#define NOTE_D8 4699
#define NOTE_DS8 4978

Приведенный участок кода записан в заголовочном файле pitches.h в форме zip файла. Вы должны скачать его и включить его в свой код программы как сделано в конце данной статьи. Либо этот код вы можете взять непосредственно из скачанного zip файла.

Проигрывание музыкальных нот на Arduino

Чтобы проигрывать мелодии на Arduino мы должны знать из чего они состоят. Существует три основных фактора, которые нужны для проигрывания мелодий:

  1. Значение ноты.
  2. Длительность ноты.
  3. Музыкальный темп.

В заголовочном файле pitches.h у нас уже записаны все значения нот, теперь нам необходимо узнать еще длительность нот чтобы проигрывать их. Музыкальный темп (Tempo) обозначает просто как быстро должна проигрываться мелодия. Если вы знаете значение ноты (Note value) и длительность ноты (Note duration) вы можете использовать их в функции tone() следующим образом:

tone (pinName, Note Value, Note Duration);

Для мелодий проигрываемых в этой статье мы записали необходимые значения нот и их длительности в заголовочном файле “themes.h”, который можно скачать по этой ссылке.

Если же вы хотите проиграть какую то свою (понравившуюся вам) мелодию, то вы должны получить нотные листы этой музыки и конвертировать их в скетч Arduino при помощи чтения значения и длительности нот из этих нотных листов.

Если у вас есть значения нот и длительности нот, загрузите их в программу в заголовочный файл “themes.h” как показано в следующем примере:

//##############**»HE IS A PIRATE» Theme song of Pirates of caribbean**##############//
int Pirates_note[] = <
NOTE_D4, NOTE_D4, NOTE_D4, NOTE_D4, NOTE_D4, NOTE_D4, NOTE_D4, NOTE_D4,
NOTE_D4, NOTE_D4, NOTE_D4, NOTE_D4, NOTE_D4, NOTE_D4, NOTE_D4, NOTE_D4,
NOTE_D4, NOTE_D4, NOTE_D4, NOTE_D4, NOTE_D4, NOTE_D4, NOTE_D4, NOTE_D4,
NOTE_A3, NOTE_C4, NOTE_D4, NOTE_D4, NOTE_D4, NOTE_E4, NOTE_F4, NOTE_F4,
NOTE_F4, NOTE_G4, NOTE_E4, NOTE_E4, NOTE_D4, NOTE_C4, NOTE_C4, NOTE_D4,
0, NOTE_A3, NOTE_C4, NOTE_B3, NOTE_D4, NOTE_B3, NOTE_E4, NOTE_F4,
NOTE_F4, NOTE_C4, NOTE_C4, NOTE_C4, NOTE_C4, NOTE_D4, NOTE_C4,
NOTE_D4, 0, 0, NOTE_A3, NOTE_C4, NOTE_D4, NOTE_D4, NOTE_D4, NOTE_F4,
NOTE_G4, NOTE_G4, NOTE_G4, NOTE_A4, NOTE_A4, NOTE_A4, NOTE_A4, NOTE_G4,
NOTE_A4, NOTE_D4, 0, NOTE_D4, NOTE_E3, NOTE_F4, NOTE_F4, NOTE_G4, NOTE_A4,
NOTE_D4, 0, NOTE_D4, NOTE_F4, NOTE_E4, NOTE_E4, NOTE_F4, NOTE_D4
>;
int Pirates_duration[] = <
4,8,4,8,4,8,8,8,8,4,8,4,8,4,8,8,8,8,4,8,4,8,
4,8,8,8,8,4,4,8,8,4,4,8,8,4,4,8,8,
8,4,8,8,8,4,4,8,8,4,4,8,8,4,4,8,4,
4,8,8,8,8,4,4,8,8,4,4,8,8,4,4,8,8,
8,4,8,8,8,4,4,4,8,4,8,8,8,4,4,8,8
>;
//###########End of He is a Pirate song#############//

Представленный фрагмент кода показывает значения и длительности нот песни “He is a Pirate” из фильма “Пираты Карибского моря“ (Pirates of the Caribbean). Аналогичным образом вы можете добавить любую понравившуюся вам мелодию в ваш проект.

Работа схемы

Схема устройства представлена на следующем рисунке.

В представленной схеме пьезоэлектрический зуммер подсоединен к контакту 8 платы Arduino и ее земле через резистор 1 кОм. Резистор 1 кОм служит для ограничения тока, чтобы ток не превысил допустимых значений. Также в схему добавлено 4 переключателя для выбора нужной мелодии. Одни из контактов переключателей замкнуты на землю, а другие подсоединены к контактам 2, 3, 4 и 5 платы Arduino соответственно. Переключатели подключаются к контактам платы Arduino через внутренние подтягивающие резисторы – это конфигурируется программно. На макетной плате собранное устройство выглядит следующим образом:

Объяснение работы программы

Полный текст программы приведен в конце статьи, здесь же объяснены ее наиболее важные части. Если у вас нет опыта в добавлении заголовочных файлов вы можете скачать код в форме ZIP и непосредственно загрузить его в плату Arduino.

В нашей программе мы будем использовать два заголовочных файла:
— “pitches.h” – для приравнивания каждой музыкальной ноты к определенной частоте;
— “themes.h” – содержит значения нот и их длительность для всех 4-х мелодий.

#include «pitches.h»
#include «themes.h»

Для каждой мелодии при необходимости ее проигрывания вызывается соответствующая функция. К примеру, для проигрывания мелодии “He is a Pirate” вызывается функция Play_Pirates(). Эта функция генерирует необходимые частоты на контакте 8 платы Arduino. Если вы хотите проиграть какую то свою мелодию, измените Pirates_note и Pirates_duration на новые значения нот и длительности нот, которые вы сохранили в файле “themes.h”.

void Play_Pirates()
<
for (int thisNote = 0; thisNote
int noteDuration = 1000 / Pirates_duration[thisNote];//конвертируем длительность во временную задержку
tone(8, Pirates_note[thisNote], noteDuration);
int pauseBetweenNotes = noteDuration * 1.05; //1.05 – tempo (музыкальный темп), увеличьте это число чтобы проигрывание стало более медленным
delay(pauseBetweenNotes);
noTone(8);
>
>

Контакты 2, 3, 4 и 5 используются для выбора мелодии, которую необходимо проиграть. На эти контакты благодаря внутренним подтягивающим резисторам подается высокий потенциал, а при нажатии кнопки на соответствующий контакт подается земля.

pinMode(2, INPUT_PULLUP);
pinMode(3, INPUT_PULLUP);
pinMode(4, INPUT_PULLUP);
pinMode(5, INPUT_PULLUP);

Следующий фрагмент кода используется для проигрывания песни когда кнопка нажата. В нем анализируется значение на контактах, к которым подключены кнопки, и когда на каком-нибудь контакте обнаруживается низкий потенциал, запускается проигрывание соответствующей мелодии.

if (digitalRead(2)==0)
< Serial.println("Selected ->‘He is a Pirate’ «); Play_Pirates(); >
if (digitalRead(3)==0)
< Serial.println("Selected ->‘Crazy Frog’ «); Play_CrazyFrog(); >
if (digitalRead(4)==0)
< Serial.println("Selected ->‘Mario UnderWorld’ «); Play_MarioUW(); >
if (digitalRead(5)==0)
< Serial.println("Selected ->‘He is a Pirate’ «); Play_Pirates(); >

Работа проекта

Когда аппаратная часть проекта и программа будут готовы просто загрузите программу в плату Arduino – после этого вы сможете проигрывать 4 загруженные мелодии с помощью нажатия соответствующих кнопок. Если у вас возникли проблемы с программой, воспользуйтесь окном монитора последовательной связи (serial monitor) для ее отладки.

Внешний вид собранного устройства на макетной плате показан на следующем рисунке.

Исходный код программы

Далее приведен полный текст программы. Надеемся, что приобретенные знания после прочтения данной статьи помогут вам сделать свои проекты на Arduino более музыкальными.

Источник

Adblock
detector