Arduino операции с float

Arduino

Арифметические операторы

= (оператор присваивания)

Присваивание переменной слева от оператора значения переменной, константы или выражения, находящихся справа.

Если тип переменной не соответствует присваиваемому значения, то в переменную будет записан неверный результат. Например, если присваиваемое значение больше чем максимальное значение типа переменной.

Здесь в переменной b окажется значение 123, так как произойдет переполнение типа, так как максимальное значение типа byte — 255.

Оператор присваивания возвращает присвоенное значение, поэтому его вызовы можно объединять:

Всем трем переменным будет присвоено значение 15.

Ну и последнее: нельзя путать оператор присваивания с оператором равенства, так как это может привести к возникновению

+ (сложение)

Оператор сложения возвращает результат выполнения операции сложения над двумя операндами.

Причем для вычисления результата будет использован наибольший тип операнда. Например, если оба операнда будут иметь тип int , даже несмотря на то, что тип переменной для сохранения результата будет иметь long , все равно произойдет переполнение:

А вот если олин из операндов будет иметь тип long , то результат будет корректный:

— (вычитание)

Оператор вычитания возвращает результат выполнения операции вычитания над двумя операндами. Результат будет иметь наибольший тип операнда.

* (умножение)

Оператор умножения возвращает результат выполнения операции умножения над двумя операндами. Результат так же будет иметь наибольший тип операнда.

/ (деление)

Оператор деления возвращает результат выполнения операции деления над двумя операндами.

Важно заметить что в случае, если оба операнда имеют тип int , для вычисления результата также будет использован тип int , поэтому при сохранении результата во float сохранен будет целочисленный результат, приведенный к float :

А вот если хотя бы один из операндов будет типа float , то результат будет также типа float :

% (остаток от деления)

Оператор возвращает остаток от деления одного целого ( int ) операнда на другой:

Источник

float

Description

Datatype for floating-point numbers, a number that has a decimal point. Floating-point numbers are often used to approximate analog and continuous values because they have greater resolution than integers. Floating-point numbers can be as large as 3.4028235E+38 and as low as -3.4028235E+38. They are stored as 32 bits (4 bytes) of information.

Syntax

Parameters

var : variable name.
val : the value you assign to that variable.

Example Code

Notes and Warnings

If doing math with floats, you need to add a decimal point, otherwise it will be treated as an int. See the Floating point constants page for details.

The float data type has only 6-7 decimal digits of precision. That means the total number of digits, not the number to the right of the decimal point. Unlike other platforms, where you can get more precision by using a double (e.g. up to 15 digits), on the Arduino, double is the same size as float.

Floating point numbers are not exact, and may yield strange results when compared. For example 9.0 / 0.3 may not quite equal 30.0. You should instead check that the absolute value of the difference between the numbers is less than some small number.

Conversion from floating point to integer math results in truncation:

If, instead, you want to round off during the conversion process, you need to add 0.5 :

or use the round() function:

Floating point math is also much slower than integer math in performing calculations, so should be avoided if, for example, a loop has to run at top speed for a critical timing function. Programmers often go to some lengths to convert floating point calculations to integer math to increase speed.

Источник

Arduino.ru

float

Описание типа

Тип данных float служит для хранения чисел с плавающей запятой. Этот тип часто используется для операций с данными, считываемыми с аналоговых входов. Диапазон значений — от -3.4028235E+38 до 3.4028235E+38. Переменная типа float занимает 32 бита (4 байта) в памяти.

Тип float имеет точность 6-7 знаков, имеются ввиду все знаки, а не только мантисса. Обычно для увеличения точности используют другой тип — double, но на платформе Arduino, double и float имеют одинаковую точность.

Хранение в памяти чисел с плавающей точкой в двоичной системе обуславливает потерю точности. Так, например, 6.0 / 3.0 не обязательно равен 2.0. Сравнивая два числа с плавающей точкой следует проверять не точное равенство, а разницу между этими числами, меньше ли она некого выбранной малого порога.

Следует также учитывать, что арифметические операции над числами с плавающей запятой выполняются существенно медленнее, чем над целыми.

Пример
Синтаксис
  • var — имя переменной
  • val — присваиваемое значение
Пример использования в коде
Смотрите также

Авторизация

Примеры

Изменяем яркость светодиода — плавное изменение яркости светодиода функцией analogWrite().

Мигаем светодиодом — пример подключения светодиода к Arduino и работы с ним

Тактовая кнопка — считывание состояния кнопки

Мигаем светодиодом без delay() — еще один, более практичный способ мигать светодиодом

Источник

float

Description

Datatype for floating-point numbers, a number that has a decimal point. Floating-point numbers are often used to approximate analog and continuous values because they have greater resolution than integers. Floating-point numbers can be as large as 3.4028235E+38 and as low as -3.4028235E+38. They are stored as 32 bits (4 bytes) of information.

Syntax

Parameters

var : variable name.
val : the value you assign to that variable.

Example Code

Notes and Warnings

If doing math with floats, you need to add a decimal point, otherwise it will be treated as an int. See the Floating point constants page for details.

The float data type has only 6-7 decimal digits of precision. That means the total number of digits, not the number to the right of the decimal point. Unlike other platforms, where you can get more precision by using a double (e.g. up to 15 digits), on the Arduino, double is the same size as float.

Floating point numbers are not exact, and may yield strange results when compared. For example 9.0 / 0.3 may not quite equal 30.0. You should instead check that the absolute value of the difference between the numbers is less than some small number.

Conversion from floating point to integer math results in truncation:

If, instead, you want to round off during the conversion process, you need to add 0.5 :

or use the round() function:

Floating point math is also much slower than integer math in performing calculations, so should be avoided if, for example, a loop has to run at top speed for a critical timing function. Programmers often go to some lengths to convert floating point calculations to integer math to increase speed.

Источник

Математические операции

Математика

Одной из основных функций микроконтроллера является выполнение вычислений, как с числами напрямую, так и со значениями переменных. Начнём погружение в мир математики с самых простых действий:

  • = присваивание
  • + сложение
  • — вычитание
  • * умножение
  • / деление
  • % остаток от деления

Рассмотрим простой пример:

По поводу последних двух строчек из примера, когда переменная участвует в расчёте своего собственного значения: существуют также составные операторы, укорачивающие запись:

  • += составное сложение: a += 10 равносильно a = a + 10
  • -= составное вычитание: a -= 10 равносильно a = a — 10
  • *= составное умножение: a *= 10 равносильно a = a * 10
  • /= составное деление: a /= 10 равносильно a = a / 10
  • %= остаток от деления: a %= 10 равносильно a = a % 10

С их использованием можно сократить запись последних двух строчек из предыдущего примера:

Очень часто в программировании используется прибавление или вычитание единицы, для чего тоже есть короткая запись:

  • ++ (плюс плюс) инкремент: a++ равносильно a = a + 1
  • — (минус минус) декремент: a— равносильно a = a — 1

Порядок записи инкремента играет очень большую роль: пост-инкремент var++ возвращает значение переменной до выполнения инкремента. Операция пре-инкремента ++var возвращает значение уже изменённой переменной. Пример:

Как говорилось в предыдущем уроке – локальные переменные нужно инициализировать, иначе в математических операциях получится непредсказуемый результат.

Порядок вычислений

Порядок вычисления выражений подчиняется обычным математическим правилам: сначала выполняются действия в скобках, затем умножение и деление, и в конце – сложение и вычитание.

Скорость вычислений

Математические вычисления выполняются процессором некоторое время, оно зависит от типа данных и типа операции. Вот время выполнения (в микросекундах) не оптимизированных компилятором вычислений для Arduino Nano 16 МГц:

Тип данных Время выполнения, мкс
Сложение и вычитание Умножение Деление, остаток
int8_t 0.44 0.625 14.25
uint8_t 0.44 0.625 5.38
int16_t 0.89 1.375 14.25
uint16_t 0.89 1.375 13.12
int32_t 1.75 6.06 38.3
uint32_t 1.75 6.06 37.5
float 8.125 10 31.5
  • Нужно понимать, что не все во всех случаях математические операции занимают ровно столько времени, так как компилятор их оптимизирует. Можно помочь ему в этом, подробнее читайте в уроке по оптимизации кода.
  • Операции с float выполняются гораздо дольше целочисленных, потому что в AVR нет аппаратной поддержки чисел с плавающей точкой и она реализована программно как сложная библиотека. В некоторых микроконтроллерах есть FPU – специальный аппаратный блок для вычислений с float .
  • Операции целочисленного деления на AVR выполняются дольше по той же причине – они реализованы программно, а вот умножение и сложение с вычитанием МК делает аппаратно и очень быстро.

Целочисленное деление

При целочисленном делении результат не округляется по “математическим” правилам, дробная часть просто отсекается, фактически это округление вниз: и 9/10 и 1/10 дадут 0 . При использовании float само собой получится 0.9 и 0.1 . Если нужно целочисленное деление с округлением вверх, его можно реализовать так: вместо x / y записать (x + y — 1) / y . Рассмотренные выше примеры деления на 10 дадут результат 1 .

Для округления по обычным математическим правилам можно использовать функцию round() , но она довольно тяжёлая, так работает с float .

Переполнение переменной

Вспомним предыдущий урок о типах данных: что будет с переменной, если её значение выйдет из допустимого диапазона? Тут всё весьма просто: при переполнении в бОльшую сторону из нового значения вычитается максимальное значение переменной, и у неё остаётся только остаток. Для сравнения представим переменную как ведро. Будем считать, что при наливании воды и заполнении ведра мы скажем стоп, выльем из него всю воду, а затем дольём остаток. Вот так и с переменной, что останется – то останется. Если переполнение будет несколько раз – несколько раз опорожним наше “ведро” и всё равно оставим остаток. Ещё один хороший пример – кружка Пифагора.

При переполнении в обратную сторону (выливаем воду из ведра), будем считать, что ведро полностью заполнилось. Да, именно так =) Посмотрим пример:

Особенность больших вычислений

Для сложения и вычитания по умолчанию используется ячейка 4 байта ( long ), но для умножения и деления – 2 байта ( int ). Если при умножении или делении в текущем действии результат превысит 32768 – ячейка переполнится и мы получим некорректный результат. Для исправления ситуации нужно привести тип переменной к long перед вычислением, что заставит МК выделить дополнительную память. Например a = (long)b * c;

Для цифр существуют модификаторы, делающие то же самое:

  • U или u – перевод в uint16_t (от 0 до 65’535). Пример: 36000u
  • L или l – перевод в int32_t (-2 147 483 648… 2 147 483 647). Пример: 325646L
  • UL или ul – перевод в uint32_t (от 0 до 4 294 967 295). Пример: 361341ul

Посмотрим, как это работает на практике:

Особенности float

Помимо медленных вычислений, поддержка работы с float занимает много памяти, т.к. реализована в виде “библиотеки”. Использование математических операций с float однократно добавляет примерно 1.5 кБ в память программы.

С вычислениями есть такая особенность: если в выражении нет float чисел, то вычисления будут иметь целый результат (дробная часть отсекается). Для получения правильного результата нужно писать преобразование (float) перед действием, использовать float числа или float переменные. Также есть модификатор f , который можно применять только к цифрам float . Смысла в нём нет, но такую запись можно встретить. Смотрим:

При присваивании float числа целочисленному типу данных дробная часть отсекается. Если хотите математическое округление – его нужно использовать отдельно:

Следующий важный момент: из за особенности самой модели “чисел с плавающей точкой” – вычисления иногда производятся с небольшой погрешностью. Смотрите (значения выведены через порт):

Казалось бы, val2 должна стать ровно 0.1 после вычитания, но в 8-ом знаке вылезла погрешность! Будьте очень внимательны при сравнении float чисел, особенно со строгими операциями : результат может быть некорректным и нелогичным.

Список математических функций

Математических функций в Arduino довольно много, часть из них являются макросами, идущими в библиотеке Arduino.h, все остальные же наследуются из мощной C++ библиотеки math.h

Функция Описание
cos (x) Косинус (радианы)
sin (x) Синус (радианы)
tan (x) Тангенс (радианы)
fabs (x) Модуль для float чисел
fmod (x, y) Остаток деления x на у для float
modf (x, *iptr) Возвращает дробную часть, целую хранит по адресу iptr http://cppstudio.com/post/1137/
modff (x, *iptr) То же самое, но для float
sqrt (x) Корень квадратный
sqrtf (x) Корень квадратный для float чисел
cbrt (x) Кубический корень
hypot (x, y) Гипотенуза ( корень(x*x + y*y) )
square (x) Квадрат ( x*x )
floor (x) Округление до целого вниз
ceil (x) Округление до целого вверх
frexp (x, *pexp) http://cppstudio.com/post/1121/
ldexp (x, exp) x*2^exp http://cppstudio.com/post/1125/
exp (x) Экспонента (e^x)
cosh (x) Косинус гиперболический (радианы)
sinh (x) Синус гиперболический (радианы)
tanh (x) Тангенс гиперболический (радианы)
acos (x) Арккосинус (радианы)
asin (x) Арксинус (радианы)
atan (x) Арктангенс (радианы)
atan2 (y, x) Арктангенс (y / x) (позволяет найти квадрант, в котором находится точка)
log (x) Натуральный логарифм х ( ln(x) )
log10 (x) Десятичный логарифм x ( log_10 x)
pow (x, y) Степень ( x^y )
isnan (x) Проверка на nan (1 да, 0 нет)
isinf (x) Возвр. 1 если x +бесконечность, 0 если нет
isfinite (x) Возвращает ненулевое значение только в том случае, если аргумент имеет конечное значение
copysign (x, y) Возвращает x со знаком y (знак имеется в виду + -)
signbit (x) Возвращает ненулевое значение только в том случае, если _X имеет отрицательное значение
fdim (x, y) Возвращает разницу между x и y, если x больше y, в противном случае 0
fma (x, y, z) Возвращает x*y + z
fmax (x, y) Возвращает большее из чисел
fmin (x, y) Возвращает меньшее из чисел
trunc (x) Возвращает целую часть числа с дробной точкой
round (x) Математическое округление
lround (x) Математическое округление (для больших чисел)
lrint (x) Округляет указанное значение с плавающей запятой до ближайшего целого значения, используя текущий режим округления и направление
Функция Значение
min(a, b) Возвращает меньшее из чисел a и b
max(a, b) Возвращает большее из чисел
abs(x) Модуль числа
constrain(val, min, max) Ограничить диапазон числа val между min и max
map(val, min, max, newMin, newMax) Перевести диапазон числа val (от min до max ) в новый диапазон (от newMin до newMax ). val = map(analogRead(0), 0, 1023, 0, 100); – получить с аналогового входа значения 0-100 вместо 0-1023. Работает только с целыми числами!
round(x) Математическое округление
radians(deg) Перевод градусов в радианы
degrees(rad) Перевод радиан в градусы
sq(x) Квадрат числа
Константа Значение Описание
INT8_MAX 127 Макс. значение char, int8_t
UINT8_MAX 255 Макс. значение byte, uint8_t
INT16_MAX 32767 Макс. значение int, int16_t
UINT16_MAX 65535 Макс. значение unsigned int, uint16_t
INT32_MAX 2147483647 Макс. значение long, int32_t
UINT32_MAX 4294967295 Макс. значение unsigned long, uint32_t
M_E 2.718281828 Число e
M_LOG2E 1.442695041 log_2 e
M_LOG10E 0.434294482 log_10 e
M_LN2 0.693147181 log_e 2
M_LN10 2.302585093 log_e 10
M_PI 3.141592654 pi
M_PI_2 1.570796327 pi/2
M_PI_4 0.785398163 pi/4
M_1_PI 0.318309886 1/pi
M_2_PI 0.636619772 2/pi
M_2_SQRTPI 1.128379167 2/корень(pi)
M_SQRT2 1.414213562 корень(2)
M_SQRT1_2 0.707106781 1/корень(2)
NAN __builtin_nan(“”) nan
INFINITY __builtin_inf() infinity
PI 3.141592654 Пи
HALF_PI 1.570796326 пол Пи
TWO_PI 6.283185307 два Пи
EULER 2.718281828 Число Эйлера е
DEG_TO_RAD 0.01745329 Константа перевода град в рад
RAD_TO_DEG 57.2957786 Константа перевода рад в град

Видео

Источник

Adblock
detector