Arduino lcd keypad проект

Подключение LCD Keypad Shield к Arduino

Сегодня я решил описать процесс подключения к контроллеру Arduino платы LCD Keypad Shield и пример работы с ним.

Сам LCD Keypad Shield представляет собой плату с двухстрочным экраном и 6-ю кнопками. Его очень удобно использовать в проектах, так как не надо разводить провода на макетной плате — тут все уже сделали за вас.

Разработчики этого шилда очень грамотно поступили, подключив все кнопки через резисторы разного сопротивления к аналоговому пину. Это позволило сэкономить 5 дискретных пинов для других нужд.

Схема LCD Keypad Shield

Используемые пины

A0 — кнопки (Select, Up, Right, Down, Left)

D4-D10 — подключение экрана

Проверочный скетч для LCD Keypad Shield

// include the library code:
#include

// initialize the library with the numbers of the interface pins
LiquidCrystal lcd(8, 9, 4, 5, 6, 7);

void setup() <
// set up the LCD’s number of columns and rows:
lcd.begin(16, 2);
// Print a message to the LCD.
lcd.setCursor(0,0);
lcd.print(«LCD Key Shield»);
lcd.setCursor(0,1);
lcd.print(«Press Key:»);
>

void loop() <
int x;
x = analogRead (0);
lcd.setCursor(10,1);
if (x

Источник

Обзор LCD модуля keypad (LCD1602, 2×16, 5V)

Автор: Сергей · Опубликовано 23.06.2016 · Обновлено 14.04.2021

Сегодня расскажу об очень популярном модуле LCD keypad shield, разработанный для Arduino UNO, MEGA и другие аналогов. Модуль включает в себя LCD дисплей (16х2) и шесть кнопок. Для взаимодействия контроллера Arduino и модуля, используются цифровые вывода 4, 5, 6, 7, 8, 9, 10 а для чтения состоянии кнопок используется один аналоговый вывод. Также модуль позволяет регулировать контрастность LCD экран, с помощью подстрочного потенциометра RP1 (10кОм). Данный модель отлично подходит для отладки каких-нибудь проектов, мониторинга и так далее.

Технические параметры

Общие сведения

Большую часть модуля занимает ЖК дисплей, марки LCD 1602 с синей подсветкой, передача данных осуществляется по 4-битному режиму, подробнее в этой статье. На нижней части расположены шесть кнопок, пять из-за которых используются для навигации и одна кнопка дублирует reset. В верхнем левом углу установлен потенциометр, необходимый для регулировки контрастности ЖК дисплея. Так как LCD keypad shield устанавливается на плату Arduino свеху и фактически занимает разъемы, на модуле расположены дополнительные отверстия, для впаивания проводов или разъемов (на отдельную колодку. выведен интерфейс ICSP).
Из принципиальной схемы, можно увидеть, что база транзистора отвечающая за подсведку модуля подключена к выводу 10 платы Arduino, следовательно, можно отключать ее.

Принцип работы кнопок
Кнопки располагаются в удобном порядке — вверх, вниз, влево, вправо, и SELECT. Все кнопки подключены к одному аналоговому входу «A0» используя цепочку резисторов, которые выдают разное опорное напряжение для «А0» при нажатии любой кнопки. На рисунке показана часть принципиальной схема LCD keypad shield

Их принциписальной схемы видно, если кнопки не нажаты напряжение на «A0» через резистор R2 (2кОм) будет 5В. Другие резисторы не влияют на схему, а при чтении аналогового вывода «A0» будет параметр на верхнем приделе 1023 (или приблизительно). Теперь рассмотрим, что произойдет, если будет нажата кнопка «Вниз». На выводе «А0» будет напряжением, которое разделено между резистором R2 (2кОм) которое подтянуто к +5В и резисторами R3 (330ОМ) и R4 (620Ом) общий суммой 950Ом, которые пытаются тянуть его вниз к 0В. Напряжения на «A0» будет составлять порядка 1.61В, это означает, что если выполнить команду analogRead () на A0, будет возвращено значение около 306, что означает нажатие кнопки «Вниз»
Такой же принцип применим и для других кнопок, напряжением и значение analogRead (), можно посмотреть ниже:

Напряжением и значение analogRead
► RIGNT: 0.00В: 0 — 8 bit; 0 — 10 bit
► UP: 0.71В: 36 — 8 bit; 145 — 10 bit
► DOWN: 1.61В: 82 — 8 bit; 306 — 10 bit
► LEFT: 2.47В: 126 — 8 bit; 505 — 10 bit
► SELECT: 3.62В: 185 — 8 bit; 741 — 10 bit

Это позволяет сэкономить целый набор выводов и использовать их для более нужного использования. Принципиальная схема LCD keypad shield, показана на рисунке ниже.

Назначение выводов
► A0: Вывод кнопок
► D4: LCD — DB4
► D5: LCD — DB5
► D6: LCD — DB6
► D7: LCD — DB7
► D8: LCD – RS
► D9: LCD Enable
► D10: LCD – отключение подсветки дисплея

Подключение LCD keypad shield к Arduino

Необходимые детали:
► Arduino UNO R3 x 1 шт.
► LCD модуль keypad (LCD1602, 2×16, 5V)
► Кабель USB 2.0 A-B x 1 шт.

Подключение
Установите модуль на плату Arduino UNO, подключите кабель и закрущите данный скетч.

Источник

dzindra/LCDKeypad

Use Git or checkout with SVN using the web URL.

Work fast with our official CLI. Learn more.

Launching GitHub Desktop

If nothing happens, download GitHub Desktop and try again.

Launching GitHub Desktop

If nothing happens, download GitHub Desktop and try again.

Launching Xcode

If nothing happens, download Xcode and try again.

Launching Visual Studio Code

Your codespace will open once ready.

There was a problem preparing your codespace, please try again.

Latest commit

Git stats

Files

Failed to load latest commit information.

README.md

LCDKeypad Arduino library

This library allows you to control display, read button state and toggle backlight of LCDKeypad shield.

LCDKeypad shield is quite common and popular. It includes 16×2 HD44780 compatible LCD and 5 push buttons. Pins 4, 5, 6, 7, 8, 9 are used to interface with the LCD. Backlight on/off function is controlled via pin 10. Analog pin 0 is used to read the buttons.

  • Download latest release zip file
  • In Arduino IDE, use Sketch -> Import Library -> Add Library command
  • Select the downloaded zip file

Include library in sketch and declare lcdKeypad variable:

You can optionaly specify button analog pin (default A0) and backlight pin (default 10). Lcd pins are 8, 9, 4, 5, 6, 7. All the defaults pins can be changed by editing appropriate defines. You can also change button analog level values if default ones do not match your board.

LCDKeypad extends LiquidCrystal class so you can use all the functions from LiquidCrystal and following new ones:

Turn backlight off.

Turn backlight on.

Read the buttons. This function does not filter or debounce the buttons.

Read filtered button states. After detecting button press for the first time and returning appropriate code this function returns KEYPAD_BLOCKED until block_delay milliseconds has passed. If the button is held after this time its code is returned once and then function returns KEYPAD_BLOCKED again for repeat_delay milliseconds. Great for use in menus or similar situations where you need only one button press code.

Источник

Подключение lcd keypad shield к arduino mega. Подключение LCD Keypad Shield. Подключаем все к LCD шилду

Опубликовано ср, 19/02/2020 — 09:46 пользователем Admin

Шилд — это плата дополнения. Я предлагаю разделить шилды на полноразмерные и отдельные модули. Полноразмерные своими очертаниями повторяют форму платы Arduino, будь то UNO, Nano или MEGA. Отдельные модули — это платы произвольной формы, созданные для выполнения определенного набора функций. И те и другие могут быть как универсальными, так и для выполнения узконаправленных задач.

В магазинах можно встретить великое множество шилдов, а при определенной квалификации вы сами можете развести печатную плату, по форме и расположению выводов повторяющую ардуину и собрать свой уникальный. На картинке изображена с набором шилдов.

Начнем с шилда, который не несёт в себе никаких особенных функций, а создан для удобства монтажа ваших проектов. Итак первый в нашем обзоре облегчит монтаж проектов с платой Arduino Nano, правда толку от малых размеров «НАНО» в таком случае ноль.

На плате расположен разъём для подключения штекера от блока пиитания, стабилизатор напряжения, а также клеммные колодки. Они подписаны и соответствуют выводам «Нанки». Кроме того присутствует кнопка «сброс» и светодиод «Питание».

Второй шилд предназначен для платы Uno. На нем расположена беспаечная макетная плата для сборки проекта и выводы, дублирующие те, что на самой ардуине — удобное решение.

Любой аналоговый датчик нуждается в питании и минусовом контакте, когда их много — перемчек становится столько, что разобраться в схеме будет очень трудно. Поэтому конструкторы придумали шилды для таких решений. В них выведены все входы и выходы, а питающие контакты продублированы и размещены рядом.

Вот пример такой платы для Ардуино версии Мега.

Проводная и беспроводная связь

С помощью этих плат можно организовать управление микроконтроллером по сети через кабель Ethernet, например, или беспроводов — через GSM-связь, вставив сим-карту.

Эта плата называется w5100 — содержит Ethernet модуль и модуль SD-кардридера. Это значит, что можно хранить данные, например лог измерений датчиков на карту памяти и управлять системой через web-интерфейс. Чтобы связать с ним ардуино пользуйтесь библиотеками:

Обратите внимание внешне он повторяет концепцию Arduino UNO R3, кроме того, он подойдет и на Mega.

Если W5100 вам кажется слишком крупным — то ENC28J60 займет меньше места. К сожалению в нем уже отсутствует SD-модуль.

Минусом является то, что он не может быть монтирован на плату, а выполнен в виде отдельного модуля.

W5500 — еще один вариант Ethernet-шилда. По своей сути — это доработанная версия W5100, оптимизированная в плане скорости и энергоэффективности.

Обратите внимание, на полноразмерных шилдах все пины дублируются клеммной колодкой. К сожалению, шилды используют порты. Конкретно этот задействует MOSI, MISO, SCK, и пин 10, для сигнала CS (выбор адресата для связи).

Если вам нужна беспроводная связь — ваш выбор это Wi-fi шилды, если есть интернет и роутер, а если этого нет — GSM-модули или GPRS Шилды.

На фото официальный шилд. На нём установлен слот под Micro SD-карту памяти, а связывается с микроконтроллером он по SPI-протоколам, через Mini-USB можно обновлять его программное обеспечение. Поддерживает 802.11b/g.

GPRS-шилд от «Амперки» вы видите выше. Вы можете заменить антенну на более мощную. Ближе к зрителю виден слот для SIM-карты, чуть дальше слот под батарейку CR1225. Батарейка на плате нужна для хота часов реального времени, а это немаловажное дополнение к возможностям GPRS-шилда. Вы можете отправлять СМС на него и с него.

С помощью этой платы можно вести контроль и давать команды (или любому другому проекту вашей реализации) находясь на любом удалении. Важно, чтобы вы находились в зоне приема сотовой связи.

Как хранить данные на Arduino?

В проектах не вся информация помещается в память микроконтроллера. Иногда требуется хранить некоторые объемы информации. Первое, что приходит на ум, уже сказано — это запись информации с датчиков, чтобы в дальнейшем изучать как изменяется окружающая среда с течение часов, дней, лет. Отличным примером является — домашняя метеостанция. Это полезно не только ученым-исследователям, но и любителям для общего образования и развития.

Это скорее не шилд, а модуль. Он миниатюрен и легок для повторению, кстати, вот его схема.

Есть и полноразмерный шилд хранения данных. Работает с SD-картами памяти, на борту есть модуль часов реального времени, которые питаются от батарейки CR1220 напряжением в 3 В, что является неплохим бонусом.

Управляем мощной нагрузкой с микроконтроллера

Первое что может прийти в голову — это реле. С их помощью можно коммутировать как цепи постоянного тока, так и с бытовой электросетью 220 Вольт они справятся на ура.

Конкретно тот модуль что изображен ниже может коммутировать 1 кВт 220 В нагрузки (или 5А) по каждому из каналов, для повышения мощности можно либо запараллелить несколько каналов, либо включать этим реле . В таком случае реле со шилда будут играть роль промежуточных усилителей.

Конечно вы можете коммутировать реле так, как я описал в статье , через транзистор и подобрать нужно реле по току, но использовать готовую плату будет надежнее, удобнее и выглядит лучше.

У реле есть один недостаток — ограниченное количество срабатываний — это следствие выгорания контактов. Это бывает из-за возникновения дуги, при размыкании мощной нагрузки (особенно индуктивного характера — это двигателя и т.п.). Сделать такой шилд можно по следующей схеме:

А вот как это выглядит в сборе:

Поэму для включения нагрузки переменного тока можно использовать тиристоры и симисторы. Одна проблема — прямо к ардуине подключать их нельзя, при пробое pn- перехода управляющего электрода, 220 В могут оказаться на плате микроконтроллера и сжечь его. Выход из этой ситуации — использования оптосимистора.

Так как это задача часто становится перед изобретателями, было разработано готовое решение — симисторный shield, его полное название — ICStation 8 Channel EL Escudo Dos Shield for Arduino. Он изначально предназначался для управления свечением «гибкого неона».

У него есть 8 каналов, к которым подключается сеть переменного тока и нагрузка.

Шилды для двигателей

Управление электродвигателем не всегда легкий процесс. В некоторых ситуациях вам может не хватить пинов для реализации поставленной задачи, или алгоритм управления достаточно сложный. С такими платами вы гораздо быстрее одолеете проект своего робота.

Мотор-ШИЛД для ардуино может управлять электродвигателями постоянного тока (4 штуки) или двумя шаговыми моторчиками.

Он построен на базе двух L293. Эта микросхема представляет собой сборку из двух H мостов, это позволяет управлять с возможностью реверса двумя ДПТ, либо 1 шаговым биполярным двигателем. Схемы подключения соответсвенно:

А в левом верхнем углу платы есть две колодки под сервоприводы (плюс, минус и управляющий сигнал). Красным кругом обведено место куда устанавливается перемычка джампер. Если она стоит — то эта плата питается от базовой платы ардуино, а если нет — от внешнего источника на 5 В.

С помощью этого модуля от отечественного производителя можно управлять двумя двигателями постоянного тока, в нём тоже есть джампер объединяющий линии питания микроконтроллера или разъединающий их — для питания от отдельного источника.

Можно управлять двигателями, которые рассчитаны на диапазон напряжение от 5 до 24 Вольт. Вместо 2-х DC-моторов можно использовать 1 однофазный шаговый или запараллелить каналы и подключить 1 мощный DC мотор с током до 4А, а это не мало — 48 Вт при напряжении питания в 24 В.

Для подключения сервопривода нужно три провода — плюс, минус и сигнал, но что делать, если у вас много серв? Ваша плата превратится в месиво из перемычек. Чтобы это избежать есть Мультисерво шилд.

Здесь тоже есть возможность разделения цепей питания, как это было в предыдущем варианте. Итого можно подключить 18 сервоприводов (на плате нумерация от 0 до 17).

Везде есть своя специфика, шилды для необычных задач…

В атмеге328, сердце нашей платы, есть АЦП. Главная проблема в том, что на плате ардуино уно мы видим всего лишь 6 аналоговых входов. Что делать если у нас больше аналоговых датчиков?

Можно собрать две ардуино в единую сеть. Одну использовать в качестве основной, а вторую вспомогательную для изменений и с первой отправлять на сервер сигналы измерений или выводить их на экран… Но это сложно: нужно тратить память на дополнительные строки программного кода для реализации такой системы.

А что если умножить каждый вход на 16? Итого у нас может быть до 16*6=96 аналоговых входов. Это реально с помощью мультиплексора. Он просто переключает по очереди 16 аналоговых каналов на один аналоговый выход, который вы подключаете к такому же входу любого мироконтроллера.

Средствами микроконтроллера Атмега о-о-очень трудно релизовать функцию распознавания голоса, но ардуинщики могут не отчаиваться, есть специальное решение — EasyVR Shield 3.0.

Это готовое, но дорогое решение, на момент написания статьи он стоит почти 100 долларов в России. Сначала шилд запишет вашу команду, затем сравнит её с тем что записано в памяти, определив номер — выполнит её.

Вы можете устроить «диалог с компьютером», он может воспроизводить то, что в нём записано. Без дополнительных усилителей рекомендуется «общаться» с этой платой с расстояния не более 60 см.

Выводим изображение

LCD Keypad shield — это настоящая панель управления. На нём расположен дисплей LCD1602 (16 символов в две строки), и набор кнопок. Из-за них задействовано довольно много портов, например A0 и с D4 по D7 под клавиатуру, а порт D10 — ШИМ-регулятор яркости подсветки. D8 и D9 — сброс и включение.

На самом деле существует много дисплеев совместимых с ардуино. Вернее тех, о которых написано больше всего информации и вы легко их запустите в своей системе. Довольно популярен в кругах самодельщиков дисплей от NOKIA 5110, на выбор есть и OLED и TFT экраны, работающие по I2C. Но они не в «шилдовом» исполнении.

Автономное питание

Довольно необычный шилд в этой подборке, который выполняет обычную задачу. Power shield — это со всеми необходимыми защитами и разъёмом для зарядки. Вроде бы ничего особенного, но это обеспечит завершенный вид вашему проекту, а цепи питания не придется размещать рядом с основными платами.

Заключение

Использование шилдов для всех задач проекта позволит избежать излишнего числа перемычек и соединений, а это снизит количество ошибок и лишних перемычек. После сборки вы получите многоэтажный бутерброд из плат заводского изготовления. Такой подход иногда называют «модульная конструкция». Между прочим, это облегчит обслуживание, ремонт и наладку оборудования.

Энтузиасты практикуют проектирование, разводку и сборку уникальных модулей. Это одна из причин высокой популярности Ардуино не просто как платформы для самоделок, макетов и прототипов, но и как платформы для готовых решений.

Сегодня расскажу об очень популярном модуле LCD keypad shield, разработанный для Arduino UNO, MEGA и другие аналогов. Модуль включает в себя LCD дисплей (16х2) и шесть кнопок. Для взаимодействия контроллера Arduino и модуля, используются цифровые вывода 4, 5, 6, 7, 8, 9, 10 а для чтения состоянии кнопок используется один аналоговый вывод. Также модуль позволяет регулировать контрастность LCD экран, с помощью подстрочного потенциометра RP1 (10кОм). Данный модель отлично подходит для отладки каких-нибудь проектов, мониторинга и так далее.

Технические параметры

Напряжение питания: 5 В
Размер дисплея: 2.6 дюйма
Тип дисплея: 2 строки по 16 символов
Цвет подсветки: синий
Цвет символов: белый
Регулировка контрастности: потенциометр
Габариты: 80мм x 58мм x 20мм

Общие сведения

Большую часть модуля занимает ЖК дисплей, марки LCD 1602 с синей подсветкой, передача данных осуществляется по 4-битному режиму, подробнее в этой . На нижней части расположены шесть кнопок, пять из-за которых используются для навигации и одна кнопка дублирует reset. В верхнем левом углу установлен потенциометр, необходимый для регулировки контрастности ЖК дисплея. Так как LCD keypad shield устанавливается на плату Arduino свеху и фактически занимает разъемы, на модуле расположены дополнительные отверстия, для впаивания проводов или разъемов (на отдельную колодку. выведен интерфейс ICSP).
Из принципиальной схемы, можно увидеть, что база транзистора отвечающая за подсведку модуля подключена к выводу 10 платы Arduino, следовательно, можно отключать ее.

Принцип работы кнопок
Кнопки располагаются в удобном порядке — вверх, вниз, влево, вправо, и SELECT. Все кнопки подключены к одному аналоговому входу «A0» используя цепочку резисторов, которые выдают разное опорное напряжение для «А0» при нажатии любой кнопки. На рисунке показана часть принципиальной схема LCD keypad shield

Их принциписальной схемы видно, если кнопки не нажаты напряжение на «A0» через резистор R2 (2кОм) будет 5В. Другие резисторы не влияют на схему, а при чтении аналогового вывода «A0» будет параметр на верхнем приделе 1023 (или приблизительно). Теперь рассмотрим, что произойдет, если будет нажата кнопка «Вниз». На выводе «А0» будет напряжением, которое разделено между резистором R2 (2кОм) которое подтянуто к +5В и резисторами R3 (330ОМ) и R4 (620Ом) общий суммой 950Ом, которые пытаются тянуть его вниз к 0В. Напряжения на «A0» будет составлять порядка 1.61В, это означает, что если выполнить команду analogRead () на A0, будет возвращено значение около 306, что означает нажатие кнопки «Вниз»
Такой же принцип применим и для других кнопок, напряжением и значение analogRead (), можно посмотреть ниже:

Напряжением и значение analogRead
RIGNT: 0.00В: 0 — 8 bit- 0 — 10 bit
UP: 0.71В: 36 — 8 bit- 145 — 10 bit
DOWN: 1.61В: 82 — 8 bit- 306 — 10 bit
LEFT: 2.47В: 126 — 8 bit- 505 — 10 bit
SELECT: 3.62В: 185 — 8 bit- 741 — 10 bit

Это позволяет сэкономить целый набор выводов и использовать их для более нужного использования. Принципиальная схема LCD keypad shield, показана на рисунке ниже.

Назначение выводов
A0: Вывод кнопок
D4: LCD — DB4
D5: LCD — DB5
D6: LCD — DB6
D7: LCD — DB7
D8: LCD – RS
D9: LCD Enable
D10: LCD – отключение подсветки дисплея

Подключение LCD keypad shield к Arduino

Необходимые детали:
Arduino UNO R3 x 1 шт.
LCD модуль keypad (LCD1602, 2×16, 5V)
Кабель USB 2.0 A-B x 1 шт.

Подключение
Установите модуль на плату Arduino UNO, подключите кабель и закрущите данный скетч.

Источник

Adblock
detector