Analog Input
In this example we use a variable resistor (a potentiometer or a photoresistor), we read its value using one analog input of an Arduino board and we change the blink rate of the built-in LED accordingly. The resistor’s analog value is read as a voltage because this is how the analog inputs work.
Hardware Required
Potentiometer or
10K ohm photoresistor and 10K ohm resistor
built-in LED on pin 13 or
220 ohm resistor and red LED
Circuit
With a potentiometer
With a photoresistor
Connect three wires to the Arduino board. The first goes to ground from one of the outer pins of the potentiometer. The second goes from 5 volts to the other outer pin of the potentiometer. The third goes from analog input 0 to the middle pin of the potentiometer.
For this example, it is possible to use the board’s built in LED attached to pin 13. To use an additional LED, attach its longer leg (the positive leg, or anode), to digital pin 13 in series with the 220 ohm resistor, and it’s shorter leg (the negative leg, or cathode) to the ground (GND) pin next to pin 13.
The circuit based on a photoresistor uses a resistor divider to allow the high impedence Analog input to measure the voltage. These inputs do not draw almost any current, therefore by Ohm’s law the voltage measured on the other end of a resistor connected to 5V is always 5V, regardless the resistor’s value. To get a voltage proportional to the photoresistor value, a resistor divider is necessary. This circuit uses a variable resistor, a fixed resistor and the measurement point is in the middle of the resistors. The voltage measured (Vout) follows this formula:
Vout=Vin*(R2/(R1+R2))
where Vin is 5V, R2 is 10k ohm and R1 is the photoresistor value that ranges from 1M ohm in darkness to 10k ohm in daylight (10 lumen) and less than 1k ohm in bright light or sunlight (>100 lumen).
Schematic
At the beginning of this sketch, the variable sensorPin is set to to analog pin 0, where your potentiometer is attached, and ledPin is set to digital pin 13. You’ll also create another variable, sensorValue to store the values read from your sensor.
The analogRead() command converts the input voltage range, 0 to 5 volts, to a digital value between 0 and 1023. This is done by a circuit inside the microcontroller called an analog-to-digital converter or ADC.
By turning the shaft of the potentiometer, you change the amount of resistance on either side of the center pin (or wiper) of the potentiometer. This changes the relative resistances between the center pin and the two outside pins, giving you a different voltage at the analog input. When the shaft is turned all the way in one direction, there is no resistance between the center pin and the pin connected to ground. The voltage at the center pin then is 0 volts, and analogRead() returns 0. When the shaft is turned all the way in the other direction, there is no resistance between the center pin and the pin connected to +5 volts. The voltage at the center pin then is 5 volts, and analogRead() returns 1023. In between, analogRead() returns a number between 0 and 1023 that is proportional to the amount of voltage being applied to the pin.
That value, stored in sensorValue , is used to set a delay() for your blink cycle. The higher the value, the longer the cycle, the smaller the value, the shorter the cycle. The value is read at the beginning of the cycle, therefore the on/off time is always equal.
See Also:
AnalogInOutSerial — Read an analog input pin, map the result, and then use that data to dim or brighten an LED.
AnalogWriteMega — Fade 12 LEDs on and off, one by one, using an Arduino Mega board.
Calibration — Define a maximum and minimum for expected analog sensor values.
Fading — Use an analog output (PWM pin) to fade an LED.
Smoothing — Smooth multiple readings of an analog input.
analogRead()
Описание
Измеряет входное напряжение на аналоговом выводе. У Arduino Uno есть 6-канальный (У Mini и Nano — 8-канальный, в Arduino Mega 2560 — 16-канальный) 10-битный аналогово-цифровой преобразователь (АЦП), который преобразовывает входное напряжение из диапазона 0 — 5 В в целочисленные значения от 0 до 1024 соответственно. Не трудно посчитать, что разрешающая способность АЦП составляет 0.005 В (5 мВ) на одно значение. Входной диапазон и разрешающая способность могут меняться с помощью функции analogReference().
Для считывания значения с аналогового входа требуется около 100 микросекунд (0.0001 с), поэтому максимальная частота опроса вывода приблизительно равна 10 000 раз в секунду.
Синтаксис
Параметры
pin: номер вывода, с которого будет считываться напряжение (A0 — A5 для большинства плат, A0 — A7 для Mini и Nano, A0 — A15 для Mega)
Возвращаемые значения
целое число int (от 0 до 1024)
Примечание
Если аналоговый вход ни к чему не подключен, значение, возвращаемое функцией analogRead(), будет меняться под влиянием нескольких факторов (таких, как величина напряжения на других аналоговых входах, наводок от вашей руки вблизи платы и т.д.).
Пример
Смотрите также
Железо
Это расширенный стартовый набор. В комплект входит Arduino Mega R3, макетные платы, множество датчиков, управляемые механизмы и необходимые радиоэлектронные компоненты. Полный список.
Arduino Uno — плата на базе микроконтроллера ATmega328P с частотой 16 МГц. На плате есть все необходимое для удобной и быстрой работы.
Макетная плата на 830 точек и ничего лишнего.
Ускоряем свою Arduino
Месяца 3 назад, как и многие горе-электроники, купил себе на мой тогдашний взгляд самую навороченную микропроцессорную плату из семейства Arduino, а именно Seeeduino Mega, на базе процессора Atmega1280. Побаловавшись всласть вращающимся сервоприводом и моргающим светодиодом, встал вопрос: «зачем же я её купил?».
Я работаю одним из ведущих конструкторов на одном крупном военном Зеленоградском заводе, и в данный момент веду проект по разработке метрологического средства измерения. В данной задаче существует бесконечное множество проблем, которые требуют индивидуального решения. Одной из таких задач является управление шаговым двигателем без шумов и с шагом не 1.8 градуса, как сказано в документации шагового двигателя, а до 0.0001 градуса. Казалось бы, задача сложна и нерешабельна, но, повозившись немного со схемами управления, пришёл к выводу, что всё реально и возможно. Требуется только генерация двух сигналов специфичной формы и со сдвигом фаз и частотой изменения напряжения до 1 МГц. (Подробное исследование шагового мотора и раскрытие всех тайн управления напишу в следующей статье) Сразу же в голове стали появляться проблески надежды, что я не зря потратил 1500 рублей на свою красненькую Seeeduino, и я, набравшись энтузиазма, начал разбираться.
Первоначальный ужас:
Подключив микропроцессорную плату к осцилографу, и написав цикл digitalWrite(HIGH), и ниже digitalWrite(LOW), на осцилографе обнаружил довольно унылый меандр с частотой 50Гц. Это кошмар. Это крах, подумал я, на фоне требуемых 1Мгц.
Далее, через осцилограф, я изучил еще несколько скоростей выполнения:
AnalogRead() — скорость выполнения 110 мкс.
AnalogWrite() — 2000 мкс
SerialPrintLn() — при скорости 9600 около 250мкс, а при максимальной скорости около 3мкс.
DigitalWrite() — 1800мкс
DigitalRead() — 1900мкс
На этом я, всплакнув, чуть не выкинул свою Seeeduino. Но не тут-то было!
Глаза боятся, руки делают!
Не буду рассказывать свои душевные муки и описывать три долгих дня изучения, лучше сразу скажу всё как есть!
Подняв всю возможную документацию на Arduino и на процессор Atmega1280, исследовав опыт зарубежных коллег, хочу предложить несколько советов, как заменять чтение/запись:
Улучшаем AnalogRead()
#define FASTADC 1
// defines for setting and clearing register bits
#ifndef cbi
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &=
_BV(bit))
#endif
#ifndef sbi
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
#endif
void setup() <
int start ;
int i ;
#if FASTADC
// set prescale to 16
sbi(ADCSRA,ADPS2) ;
cbi(ADCSRA,ADPS1) ;
cbi(ADCSRA,ADPS0) ;
#endif
Serial.begin(9600) ;
Serial.print(«ADCTEST: «) ;
start = millis() ;
for (i = 0 ; i
Результат: скорость 18,2 мкс против бывших 110 мкс.
Кстати, максимальная скорость АЦП Атмеги как раз 16мкс. Как вариант — использовать другую микросхему, заточенную именно под АЦП, которая позволит уменьшить скорость до 0,2мкс (читать ниже, почему)
Улучшаем digitalWrite()
Каждая Arduino/Seeeduino/Feduino/Orduino/прочаяduino имеет порты. Каждый порт — 8 бит, которые сначала надо настроить на запись. Например, на моей Seeeduino PORTA — c 22 по 30 ножку. Теперь всё просто. Управляем с 22 по 30 ножки с помощью функций
PORTA=B00001010 (битовая, ножки 23 и 25 — HIGH)
или
PORTA=10 (десятичная, всё так же)
Результат = 0,2мкс против 1800мкс, которые достигаются обычным digitalWrite()
Улучшаем digitalRead()
Практически то же самое, что и в улучшении с digitalWrite(), но теперь настраиваем ножки на INPUT, и используем, например:
if (PINA==B00000010) <. >(если на ножке 23 присутствует HIGH, а на 22 и 24-30 присутствует LOW)
Результат выполнения этого if() — 0.2мкс против 1900мкс, которые достигаются обычным digitalRead()
Улучшаем ШИМ модулятор, или analogWrite()
for (int k=0;k
Вот и получили ШИМ с частотой 19кГц против 50Гц.
Аналоговые выводы
На плате UNO есть шесть выводов, которые подписаны от A0 до A5 (у других плат может быть другое число выводов). Они работают с напряжением от 0 до 5V. Благодаря встроенному АЦП (аналого-цифровой преобразователь), данные входы могут считывать напряжение подаваемое на них. Микроконтроллеры Atmega328, используемые в Arduino UNO, содержат шестиканальный АЦП, разрешение которого составляет 10 бит. Это позволяет на выходе получать значения от 0 до 1023 (всего 1024 градации).
Для чтения показания напряжения есть встроенный метод analogRead(), возвращающий значение от 0 до 1023. Значение 0 относится к 0V, а 1023 к 5V. Таким образом, если мы хотим конвертировать значение от 0 до 5, то нужно произвести деление 1023/5 = 204.6
Имеется также функция analogReference(type). Она задаёт опорное напряжение, относительно которого происходят аналоговые измерения. В проектах для новичков она не используется, поэтому не будем обращать на неё внимания.
Кроме того, аналоговые выходы могут работать как цифровые и обозначаются как 14, 15, 16, 17, 18, 19 вместо A0..A5.
И, наоборот, цифровые порты с символом тильды
(3, 5, 6, 9, 10, 11) могут работать как аналоговые выходы, используя ШИМ.
Аналоговые выводы, в отличие от цифровых, не нужно объявлять как вход или выход в начале программы.
Изучим простой пример с одним проводом и аналоговым выводом. Соединим проводом порты A0 и 3.3V. Напишем скетч.
Откройте окно Serial Monitor и наблюдайте за показаниями. Должны выводиться числа, близкие к значению 3.3: 3.1, 3.2, 3.3. Если, не закрывая программу, вытащить конец провода из порта 3.3V и вставить в порт 5V, то показания изменятся, а на экране появятся числа 5.0. Если перекинуть конец провода на GND, то увидим значения 0.
Таким образом мы видим, что можем получать значения напряжения из аналоговых портов.
Вольтметр
Если мы можем снимать значения из аналоговых портов, то можем использовать микроконтроллер как вольтметр. Достаточно вставить провода в выводы GND и A0 и соединить их с контактами на батарее (минус и плюс соответственно). Вообще такой способ не является суперточным. Хотя он и показывал правдоподобные результаты на пальчиковой батарее 1.5 В и «Кроне» на 9 В, но также показывал результаты, когда провода вообще ни к чему не были присоединены. Но для общего развития оставлю.
01.Basics | AnalogReadSerial (Чтение аналоговых выводов через потенциометр)
С помощью потенциометра мы можем менять напряжение и считывать данные с выводов.
Продолжим изучение работы с аналоговыми выводами через пример AnalogReadSerial из меню File | Examples | 01.Basics. Цель урока — плавно изменять напряжение и подавать его на аналоговый вывод, чтобы получить с него текущее значение напряжения.
Нам понадобятся плата Arduino, потенциометр и несколько проводов (или перемычек). Соединяем парные ножки с выводами на плате 5V и GND. Среднюю ножку необходимо соединить с аналоговым выводом на плате, помеченную как A0.
Не важно, какая из крайних ножек потенциометра будет подключена к 5V, а какая к GND, поменяется только направление, в котором нужно крутить ручку для изменения напряжения. Сам сигнал считывается со средней ножки, которая связана с аналоговым портом. Для считывания аналогового сигнала, принимающего широкий спектр значений, а не просто 0 или 1, подходят только порты, помеченные на плате как ANALOG IN. Они все пронумерованы с префиксом A (A0-A5).
Схема готова. Вращая регулятором потенциометра, мы можем менять сопротивление от 5 Вольт до 0. Arduino позволяет считывать текущее напряжение, которое подаётся на среднюю ножку при помощи аналогового вывода. Результаты могут колебаться от 0 до 1023.
Код очень простой. При инициализации устанавливаем нужную скорость связи: Serial.begin(9600);. Далее в цикле мы постоянно считываем данные, поступающие с потенциометра при помощи метода analogRead(). Так как значения будут находиться в диапазоне от 0 до 1023, мы можем использовать тип int для переменной sensorValue.
Полученный результат будем выводить в окно последовательного монитора.
Проверка (Serial Monitor)
Запустите программу, а также откройте окно последовательного монитора. Вращая регулятором потенциометра, вы можете наблюдать, как в окне будут меняться значения от 0 до 1023.
Пример интересен своей универсальностью. Потенциометр является ручным делителем напряжения. Существуют другие детали, которые выполняют такую же работу. Например, фоторезистор меняет напряжение в зависимости от освещённости. Также напряжение может меняться от нажатия, от температуры и т.д. При этом нам не нужно менять программу, просто одну деталь меняем на другую и код будет выполняться. Единственное различие будет в выводимых результатах — каждый делитель напряжения имеет свои характеристики и, соответственно, будет давать свои показания.
Проверка (Serial Plotter)
Начиная с версии Arduino IDE 1.6.6, в настройках появился новый инструмент Plotter (Tools | Serial Plotter), позволяющий выводить простенький график. Обратите внимание, что он не может работать одновременно с последовательным монитором, который следует закрыть.
Вращая ручку потенциометра, можем наблюдать изменение графика.
01.Basics | ReadAnalogVoltage (Напряжение аналоговых выводов через потенциометр)
Рассмотрим урок ReadAnalogVoltage из меню File | Examples | 01.Basics. Он практически идентичен примеру AnalogReadSerial, только мы будем конвертировать значения от аналогового вывода (0. 1023) в значения напряжения (0. 5). Для примера нам понадобится потенциометр. Цель урока — плавно изменять напряжение и подавать его на аналоговый вывод, чтобы получить текущее значение напряжения.
Схема прежняя, ничего не меняем. Соединяем парные ножки с выводами на плате 5V и GND. Среднюю ножку необходимо соединить с аналоговым выводом на плате, помеченную как A0.
Схема готова. Вращая регулятором потенциометра, мы можем менять сопротивление от 5 Вольт до 0. Arduino позволяет считывать текущее напряжение, которое подаётся на среднюю ножку при помощи аналогового вывода. Результаты могут колебаться от 0 до 1023.
Если сравнить два примера, то разница в одной строке float voltage = sensorValue * (5.0 / 1023.0);. В цикле считываем данные, поступающие с потенциометра при помощи метода analogRead(). Так как значения будут находиться в диапазоне от 0 до 1023, мы можем использовать тип int для переменной sensorValue. Используем элементарную математику и делим результат на коэффициент.
Полученный результат будем выводить в окно последовательного монитора.
Запустите программу, а также откройте окно последовательного монитора. Вращая регулятором потенциометра, вы можете наблюдать, как в окне будут меняться значения от 0.00 до 5.00.
Светодиод с плавной регулировкой
Усложним конструкцию, добавив светодиод. Первую часть схему можно было не трогать. Но для экономии в предыдущем примере я соединил ножку потенциометра сразу с портом GND. На этот раз сделаем соединение из двух проводов. Это необходимо, чтобы светодиод тоже мог соединиться с заземлением. Поэтому финальный макет будет следующим.
Практически все инструкции вам знакомы. Тут нужно уяснить момент, что яркость светодиода управляется нашим кодом, а не подачей напряжения через потенциометр. Мы считываем показания потенциометра, как в первом варианте и переводим получаемые значения в диапазон от 0 до 255. Затем воспроизводим старый пример с плавной регулировкой светодиода и подаём ему нужные значения. Теперь при вращении ручки потенциометра мы одновременно управляем степенью накала светодиода. Напомню, что светодиод следует подключить к портам с тильдой, например,
03.Analog: AnalogInput
Небольшая модификация примера с миганием светодиода. Частота мигания будет зависеть от показаний потенциометра. Можно использовать встроенный светодиод или установить свой. Общая схема остаётся как у первого примера.
Получая показания от потенциометра в интервале 0-1023 мы регулируем задержку между миганием светодиода в интервале от 0 до 1.023 секунд.
03.Analog: AnalogInOutSerial
Считываем данные с потенциометра и распределяем их в интервале от 0 до 255 с помощью функции map(). Данный интервал удобно использовать для выводов с PWM (ШИМ). Применим получаемые значения для управления яркостью светодиода, а также будем выводить информацию в Serial Monitor.
Запускаем скетч, крутим ручку потенциометр, наблюдаем за показаниями на экране и следим за яркостью светодиода.
03.Analog: Smoothing
Если показания аналогового датчика «прыгают», то имеет смысл вычислить среднее значение за определённый промежуток времени и результат выдавать на экран. Таким образом мы получим более плавные значения.
Для демонстрации можно использовать потенциометр, хотя он выдаёт обычно нормальные данные, но нам важно узнать принцип.
Схема обычная, берём из примеров выше.
05.Control: IfStatementConditional
В примере File | Examples | 05.Control | IfStatementConditional рассматривается случай, когда показания достигают определённой величины. При достижении заданного порога включается светодиод. Урок знакомит новичка с оператором условия if (Если).
Схема без изменений (см. рисунки выше). Среднюю ножку потенциометра соединяем с аналоговым выводом A0, остальные две ножки соединяем с питанием 5В и землёй. При желании установите внешний светодиод на цифровой вывод 13 (можно обойтись встроенным светодиодом).