Аналоговые выходы ардуино нано

Содержание

Arduino Nano: распиновка, схема подключения и программирование

Плата Arduino Nano — аналог флагманской Uno в миниатюрном размере. На ней предусмотрено всё необходимое для удобной работы с микроконтроллером: 14 цифровых входов/выходов (6 из них могут использоваться в качестве ШИМ-выходов), 6 аналоговых входов, кварцевый резонатор на 16 МГц, разъём Mini-USB, разъём питания, разъём для внутрисхемного программирования (ICSP) и кнопка сброса.

Видеообзор

Подключение и настройка

Для запуска платформы скачайте и установите на компьютер интегрированную среду разработки Arduino IDE.

При выборе платформы выбирайте Arduino Nano.

Если всё получилось — можете смело переходить к экспериментам.

Элементы платы

Микроконтроллер ATmega328P

Сердцем платформы Arduino Nano является 8-битный микроконтроллер семейства AVR — ATmega328P с тактовой частотой 16 МГц. Контроллер предоставляет 32 КБ Flash-памяти для хранения прошивки, 2 КБ оперативной памяти SRAM и 1 КБ энергонезависимой памяти EEPROM для хранения данных.

Микросхема FT232R

Микросхема FTDI FT232R обеспечивает связь микроконтроллера ATmega328P с USB-портом компьютера. При подключении к компьютеру Nano определяется как виртуальный COM-порт.

USB-UART преобразователь общается с микроконтроллером ATmega328P по интерфейсу UART через пины 0(RX) и 1(TX) . Рекомендуем не использовать эти контакты в своём проекте.

Светодиодная индикация

Имя светодиода Назначение
RX и TX Мигают при обмене данными между Arduino Nano и ПК.
L Пользовательский светодиод подключённый к 13 пину микроконтроллера. При высоком уровне светодиод включается, при низком – выключается.
ON Наличие питания на Arduino Nano.

Разъём Mini-USB

Разъём Mini-USB предназначен для прошивки платформы с помощью компьютера.

Регулятор напряжения 5 В

Линейный понижающий регулятор напряжения LM1117MPX-5.0 с выходом 5 вольт обеспечивает питание микроконтроллера ATmega328P и другой логики платформы. Максимальный выходной ток составляет 800 мА.

ICSP-разъём для ATmega328

ICSP-разъём предназначен для загрузки прошивки в микроконтроллер ATmega328 через программатор.

Также через контакты ICSP Nano общается с платами расширения по интерфейсу SPI.

Источник

Аналоговые выводы

На плате UNO есть шесть выводов, которые подписаны от A0 до A5 (у других плат может быть другое число выводов). Они работают с напряжением от 0 до 5V. Благодаря встроенному АЦП (аналого-цифровой преобразователь), данные входы могут считывать напряжение подаваемое на них. Микроконтроллеры Atmega328, используемые в Arduino UNO, содержат шестиканальный АЦП, разрешение которого составляет 10 бит. Это позволяет на выходе получать значения от 0 до 1023 (всего 1024 градации).

Для чтения показания напряжения есть встроенный метод analogRead(), возвращающий значение от 0 до 1023. Значение 0 относится к 0V, а 1023 к 5V. Таким образом, если мы хотим конвертировать значение от 0 до 5, то нужно произвести деление 1023/5 = 204.6

Имеется также функция analogReference(type)​. Она задаёт опорное напряжение, относительно которого происходят аналоговые измерения. В проектах для новичков она не используется, поэтому не будем обращать на неё внимания.

Кроме того, аналоговые выходы могут работать как цифровые и обозначаются как 14, 15, 16, 17, 18, 19 вместо A0..A5.

И, наоборот, цифровые порты с символом тильды

(3, 5, 6, 9, 10, 11) могут работать как аналоговые выходы, используя ШИМ.

Аналоговые выводы, в отличие от цифровых, не нужно объявлять как вход или выход в начале программы.

Изучим простой пример с одним проводом и аналоговым выводом. Соединим проводом порты A0 и 3.3V. Напишем скетч.

Откройте окно Serial Monitor и наблюдайте за показаниями. Должны выводиться числа, близкие к значению 3.3: 3.1, 3.2, 3.3. Если, не закрывая программу, вытащить конец провода из порта 3.3V и вставить в порт 5V, то показания изменятся, а на экране появятся числа 5.0. Если перекинуть конец провода на GND, то увидим значения 0.

Таким образом мы видим, что можем получать значения напряжения из аналоговых портов.

Вольтметр

Если мы можем снимать значения из аналоговых портов, то можем использовать микроконтроллер как вольтметр. Достаточно вставить провода в выводы GND и A0 и соединить их с контактами на батарее (минус и плюс соответственно). Вообще такой способ не является суперточным. Хотя он и показывал правдоподобные результаты на пальчиковой батарее 1.5 В и «Кроне» на 9 В, но также показывал результаты, когда провода вообще ни к чему не были присоединены. Но для общего развития оставлю.

01.Basics | AnalogReadSerial (Чтение аналоговых выводов через потенциометр)

С помощью потенциометра мы можем менять напряжение и считывать данные с выводов.

Продолжим изучение работы с аналоговыми выводами через пример AnalogReadSerial из меню File | Examples | 01.Basics. Цель урока — плавно изменять напряжение и подавать его на аналоговый вывод, чтобы получить с него текущее значение напряжения.

Нам понадобятся плата Arduino, потенциометр и несколько проводов (или перемычек). Соединяем парные ножки с выводами на плате 5V и GND. Среднюю ножку необходимо соединить с аналоговым выводом на плате, помеченную как A0.

Не важно, какая из крайних ножек потенциометра будет подключена к 5V, а какая к GND, поменяется только направление, в котором нужно крутить ручку для изменения напряжения. Сам сигнал считывается со средней ножки, которая связана с аналоговым портом. Для считывания аналогового сигнала, принимающего широкий спектр значений, а не просто 0 или 1, подходят только порты, помеченные на плате как ANALOG IN. Они все пронумерованы с префиксом A (A0-A5).

Схема готова. Вращая регулятором потенциометра, мы можем менять сопротивление от 5 Вольт до 0. Arduino позволяет считывать текущее напряжение, которое подаётся на среднюю ножку при помощи аналогового вывода. Результаты могут колебаться от 0 до 1023.

Код очень простой. При инициализации устанавливаем нужную скорость связи: Serial.begin(9600);. Далее в цикле мы постоянно считываем данные, поступающие с потенциометра при помощи метода analogRead(). Так как значения будут находиться в диапазоне от 0 до 1023, мы можем использовать тип int для переменной sensorValue.

Полученный результат будем выводить в окно последовательного монитора.

Проверка (Serial Monitor)

Запустите программу, а также откройте окно последовательного монитора. Вращая регулятором потенциометра, вы можете наблюдать, как в окне будут меняться значения от 0 до 1023.

Пример интересен своей универсальностью. Потенциометр является ручным делителем напряжения. Существуют другие детали, которые выполняют такую же работу. Например, фоторезистор меняет напряжение в зависимости от освещённости. Также напряжение может меняться от нажатия, от температуры и т.д. При этом нам не нужно менять программу, просто одну деталь меняем на другую и код будет выполняться. Единственное различие будет в выводимых результатах — каждый делитель напряжения имеет свои характеристики и, соответственно, будет давать свои показания.

Проверка (Serial Plotter)

Начиная с версии Arduino IDE 1.6.6, в настройках появился новый инструмент Plotter (Tools | Serial Plotter), позволяющий выводить простенький график. Обратите внимание, что он не может работать одновременно с последовательным монитором, который следует закрыть.

Вращая ручку потенциометра, можем наблюдать изменение графика.

01.Basics | ReadAnalogVoltage (Напряжение аналоговых выводов через потенциометр)

Рассмотрим урок ReadAnalogVoltage из меню File | Examples | 01.Basics. Он практически идентичен примеру AnalogReadSerial, только мы будем конвертировать значения от аналогового вывода (0. 1023) в значения напряжения (0. 5). Для примера нам понадобится потенциометр. Цель урока — плавно изменять напряжение и подавать его на аналоговый вывод, чтобы получить текущее значение напряжения.

Схема прежняя, ничего не меняем. Соединяем парные ножки с выводами на плате 5V и GND. Среднюю ножку необходимо соединить с аналоговым выводом на плате, помеченную как A0.

Схема готова. Вращая регулятором потенциометра, мы можем менять сопротивление от 5 Вольт до 0. Arduino позволяет считывать текущее напряжение, которое подаётся на среднюю ножку при помощи аналогового вывода. Результаты могут колебаться от 0 до 1023.

Если сравнить два примера, то разница в одной строке float voltage = sensorValue * (5.0 / 1023.0);. В цикле считываем данные, поступающие с потенциометра при помощи метода analogRead(). Так как значения будут находиться в диапазоне от 0 до 1023, мы можем использовать тип int для переменной sensorValue. Используем элементарную математику и делим результат на коэффициент.

Полученный результат будем выводить в окно последовательного монитора.

Запустите программу, а также откройте окно последовательного монитора. Вращая регулятором потенциометра, вы можете наблюдать, как в окне будут меняться значения от 0.00 до 5.00.

Светодиод с плавной регулировкой

Усложним конструкцию, добавив светодиод. Первую часть схему можно было не трогать. Но для экономии в предыдущем примере я соединил ножку потенциометра сразу с портом GND. На этот раз сделаем соединение из двух проводов. Это необходимо, чтобы светодиод тоже мог соединиться с заземлением. Поэтому финальный макет будет следующим.

Практически все инструкции вам знакомы. Тут нужно уяснить момент, что яркость светодиода управляется нашим кодом, а не подачей напряжения через потенциометр. Мы считываем показания потенциометра, как в первом варианте и переводим получаемые значения в диапазон от 0 до 255. Затем воспроизводим старый пример с плавной регулировкой светодиода и подаём ему нужные значения. Теперь при вращении ручки потенциометра мы одновременно управляем степенью накала светодиода. Напомню, что светодиод следует подключить к портам с тильдой, например,

03.Analog: AnalogInput

Небольшая модификация примера с миганием светодиода. Частота мигания будет зависеть от показаний потенциометра. Можно использовать встроенный светодиод или установить свой. Общая схема остаётся как у первого примера.

Получая показания от потенциометра в интервале 0-1023 мы регулируем задержку между миганием светодиода в интервале от 0 до 1.023 секунд.

03.Analog: AnalogInOutSerial

Считываем данные с потенциометра и распределяем их в интервале от 0 до 255 с помощью функции map(). Данный интервал удобно использовать для выводов с PWM (ШИМ). Применим получаемые значения для управления яркостью светодиода, а также будем выводить информацию в Serial Monitor.

Запускаем скетч, крутим ручку потенциометр, наблюдаем за показаниями на экране и следим за яркостью светодиода.

03.Analog: Smoothing

Если показания аналогового датчика «прыгают», то имеет смысл вычислить среднее значение за определённый промежуток времени и результат выдавать на экран. Таким образом мы получим более плавные значения.

Для демонстрации можно использовать потенциометр, хотя он выдаёт обычно нормальные данные, но нам важно узнать принцип.

Схема обычная, берём из примеров выше.

05.Control: IfStatementConditional

В примере File | Examples | 05.Control | IfStatementConditional рассматривается случай, когда показания достигают определённой величины. При достижении заданного порога включается светодиод. Урок знакомит новичка с оператором условия if (Если).

Схема без изменений (см. рисунки выше). Среднюю ножку потенциометра соединяем с аналоговым выводом A0, остальные две ножки соединяем с питанием 5В и землёй. При желании установите внешний светодиод на цифровой вывод 13 (можно обойтись встроенным светодиодом).

Источник

Эксперимент №15. Аналоговые порты ардуино и потенциометр

У ардуино нано и уно есть 6 аналоговых портов ввода-вывода. Они имеют обозначение A0..A5 (A – Analog). Из их названия можно догадаться, что они используются для получения и передачи аналоговых значений. В действительности, это мультифункциональные порты, и с их помощью можно не только работать с аналоговыми сигналами. Но об этом – в других экспериментах!

Кстати, на китайских клонах ардуино нано обычно можно видеть дополнительные порты A6..A7, которые также можно использовать для чтения аналогового сигнала, но ни для чего другого.

Итак, аналоговое значение, в отличие от цифрового (логического), может принимать любое значение, и даже дробное. Однако у ардуино есть пара ограничений на этот счет:

  • на аналоговый порт ардуино должно подаваться напряжение в пределах от 0 до 5V;
  • точность измерения ардуино поставляет 1/1024, т.е., примерно, 0.001, что весьма неплохо.

Прежде чем продолжить теорию, давайте соберем следующую простую схему и загрузим ниже приведенный скетч.

Необходимые компоненты

  • 1 потенциометр (любого номинала)
  • Остальное – как обычно.

Схема подключения потенциометра к ардуино

У потенциометра (переменного резистора) – 3 контакта. В нашем случае средний контакт подключаем к аналоговому порту A0, а два других – к земле (GND) и 5V, соответственно.

Скетч чтения аналогового входа ардуино

Результат чтения аналогового входа ардуино

Скетч считывает значение с аналогового порта A0 (с небольшой задержкой) и выводит его в последовательный порт. При этом считываемое значение переводится в вольты и тоже выводится.

Объяснение

Для получения аналогового значения мы вызываем функцию analogRead(A0). Она вернет целочисленное значение в пределах 0..1023. При этом 0 соответствует 0V, а 1024 – максимуму, т.е. 5V.

Потенциометр играет роль делителя напряжения, позволяющего подавать на порт A0 напряжение в пределах от 0V до значения на входе (5V).

Теперь должно быть понятным, почему точность измерения ардуино составляет 1/1024: это цена деления шкалы считывателя аналоговых значений.

Чтобы получить реальное, аналоговое значение, выраженное в вольтах, можно применить простую формулу отношения. Однако у ардуино есть готовая функция map, которая это сделает за нас:

map(val, 0, 1023, 0, 5)

На вход подается значение, которое нужно преобразовать, диапазон значений в текущих единицах измерения (0..1023) и диапазон в единицах на выходе (0..5V).

Еще немного об аналоговом входе ардуино

На примере использования потенциометра с ардуино, мы на самом деле показали как использовать с ардуино любой аналоговый датчик.

К аналоговому входу ардуино подключается любой аналоговый датчик. Измеряя напряжение на аналоговом входе, программа ардуино судит о реальном аналоговом сигнале от источника. Это может быть, например, интенсивность освещенности, измеряемая в люменах или температура в градусах цельсия, все что угодно, выраженное диапазоном значений от 0 до 5V.

Т.о. для получения реального значения необходимо, как минимум, знать какому значению (например, температуры) соответствует 0V, а какому – 5V.

Кроме того, зависимость между реальным измеряемым значением и напряжением на пине ардуино обычно далеко не линейная. Т.е. если предположить, что 0V соответствует 0*C, а 5V – 100*C, то 2,5V – вовсе не обязательно = 50*C. Это надо понимать, и всегда сверяться с документацией на применяемый аналоговый датчик.

Заключение

Теперь с помощью простого потенциометра и ардуино вы сможете управлять различными устройствами: управлять яркостью ламп, скоростью вращения шагового двигателя, углом поворота сервомотора и многое другое.

Кроме того, вы понимаете как считывать данные с любого налогового датчика, подключенного к ардуино.

Добавить комментарий Отменить ответ

Для отправки комментария вам необходимо авторизоваться.

Источник

Adblock
detector