Аналоговые входы arduino для чего

Arduino.ru

Аналоговые входы

Описание портов, работающих как аналоговые входы, платформы Arduino (Atmega8, Atmega168, Atmega328, или Atmega1280)

Аналого-цифровой преобразователь

Микроконтроллеры Atmega, используемые в Arduino, содержат шестиканальный аналого-цифровой преобразователь (АЦП). Разрешение преобразователя составляет 10 бит, что позволяет на выходе получать значения от 0 до 1023. Основным применением аналоговых входов большинства платформ Arduino является чтение аналоговых датчиком, но в тоже время они имеют функциональность вводов/выводов широкого применения (GPIO) (то же, что и цифровые порты ввода/вывода 0 — 13).

Таким образом, при необходимости применения дополнительных портов ввода/вывода имеется возможность сконфигурировать неиспользуемые аналоговые входы.

Цоколевка

Выводы Arduino, соответствующие аналоговым входам, имеют номера от 14 до 19. Это относится только к выводам Arduino, а не к физическим номерам выводов микроконтроллера Atmega. Аналоговые входы могут использоваться как цифровые выводы портов ввода/вывода. Например, код программы для установки вывода 0 аналогового входа на порт вывода со значением HIGH:

pinMode(14, OUTPUT);
digitalWrite(14, HIGH);

Подтягивающие резисторы

Выводы аналоговые входов имеют подтягивающие резисторы работающие как на цифровых выводах. Включение резисторов производится командой

digitalWrite(14, HIGH); // включить резистор на выводе аналогового входа 0

пока вывод работает как порт ввода.

Подключение резистора повлияет на величину сообщаемую функцией analogRead() при использовании некоторых датчиков. Большинство пользователей использует подтягивающий резистор при применении вывода аналогового входа в его цифровом режиме.

Подробности и предостережения

Для вывода, работавшего ранее как цифровой порт вывода, команда analogRead будет работать некорректно. В этом случае рекомендуется сконфигурировать его как аналоговый вход. Аналогично, если вывод работал как цифровой порт вывода со значением HIGH, то обратная установка на ввод подключит подтягивающий резистор.

Руководство на микроконтроллер Atmega не рекомендует производить быстрое переключение между аналоговыми входами для их чтения. Это может вызвать наложение сигналов и внести искажения в аналоговую систему. Однако после работы аналогового входа в цифровом режиме может потребоваться настроить паузу между чтением функцией analogRead() других входов.

Источник

Аналоговые пины

В прошлом уроке мы разобрали измерение и вывод цифрового сигнала, а в этом разберём аналоговый сигнал. Зачем нужно читать аналоговый сигнал? Микроконтроллер может выступать в роли вольтметра, измерять собственное напряжение питания, например от аккумулятора, может измерять ток через шунт (если вы знаете закон Ома), можно измерять сопротивление, а также работать с потенциометрами (крутильными, линейными, джойстиками), которые являются очень удобными органами управления.

В уроке про возможности микроконтроллера мы обсуждали аналоговые входы, т.е. входы, подключенные к АЦП – аналогово-цифровому преобразователю (ADC). Взглянем на распиновку популярных плат (Arduino Nano и Wemos Mini):

Пины, на которых выведен ADC, могут измерять аналоговый сигнал. На плате Nano это пины, маркированные буквой А (A0A7), а у esp8266 такой пин всего один – A0.

Чтение сигнала

“Аналоговые” пины могут принимать напряжение от 0V (GND) до опорного напряжения и преобразовывать его в цифровое значение, просто в какие-то условные единицы. АЦП на AVR и esp8266 имеет разрядность в 10 бит, т.е. мы получаем измеренное напряжение в виде числа от 0 до 1023 .

Функция, которая оцифровывает напряжение, называется analogRead(pin) . Она принимает в качестве аргумента номер аналогового пина и возвращает оцифрованное напряжение. Сам пин должен быть сконфигурирован как INPUT (вход). Нумерация:

  • Arduino Nano:
    • Просто номером А-пина: A0 – 0
    • Как на плате: A0 – A0
    • Порядковым номером GPIO: А0 – 14 , A1 – 15 .. А7 – 21
  • Wemos Mini
    • Просто номером А-пина: A0 – 0
    • Как на плате: A0 – A0

Пример, опрашивающий пин А0:

Хранить полученное значение разумно в переменной типа int , потому что значение варьируется от 0 до 1023.

10k) – можно, но всё равно не рекомендуется этого допускать.

Потенциометры

Аналоговые пины очень часто используются при работе с потенциометрами (переменный резистор). При помощи полученного значения можно влиять на ход работы программы, менять какие-то настройки и тому подобное. У потенциометра всегда три ноги: две крайние и одна центральная. Всё вместе это представляет собой делитель напряжения, который и позволяет менять напряжение в диапазоне 0-VCC: К Arduino потенциометр подключается следующим образом: средний вывод на любой A-пин, крайние – на GND и питание. От порядка подключения GND и питания зависит направление изменения значения. Что касается сопротивления, то читай заметку по делителям напряжения ниже в этом уроке. Чаще всего для МК ставят потенциометры с сопротивлением 10 кОм, но диапазон в принципе очень широк: от 1 кОм до 100 кОм. Чем больше, тем более шумным будет приходить сигнал, а если брать меньше – пойдут потери тока в нагрев потенциометра, а это никому не нужно.

Опорное напряжение (для AVR Arduino)

Опорное напряжение играет главную роль в измерении аналогового сигнала, потому что именно от него зависит максимальное измеряемое напряжение и вообще возможность и точность перевода полученного значения 0-1023 в Вольты. Изучим функцию analogReference(mode) , где mode:

  • DEFAULT : опорное напряжение равно напряжению питания МК. Активно по умолчанию
  • INTERNAL : встроенный источник опорного на 1.1V (для ATmega168 или ATmega328P) и 2.56V (на ATmega8)
  • INTERNAL1V1 : встроенный источник опорного на 1.1V (только для Arduino Mega)
  • INTERNAL2V56 : встроенный источник опорного на 2.56V (только для Arduino Mega)
  • EXTERNAL : опорным будет считаться напряжение, поданное на пин AREF

После изменения источника опорного напряжения (вызова analogReference() ) первые несколько измерений могут быть нестабильными. Значение 1023 функции analogRead() будет соответствовать выбранному опорному напряжению или напряжению выше его.

В режиме DEFAULT мы можем оцифровать напряжение от 0 до напряжения питания VCC. Если напряжение питания 4.5 Вольта, и мы подаём 4.5 Вольт – получим оцифрованное значение 1023. Если подаём 5 Вольт – опять же получим 1023, т.к. выше опорного. Это правило работает и дальше, главное не превышать 5.5 Вольт. Как измерять более высокое напряжение, читайте ниже.

Что касается точности: при питании от 5V и режиме DEFAULT мы получим точность измерения напряжения (5 / 1024)

4.9 милливольт. Поставив INTERNAL мы можем измерять напряжение от 0V до 1.1V с точностью (1.1 / 1024)

0.98 милливольт. Весьма неплохо, особенно если баловаться с делителем напряжения.

Что касается внешнего источника опорного напряжения: нельзя подавать напряжение меньше 0V (отрицательное) или выше 5.5V в качестве внешнего опорного в пин AREF. Также при подключении внешнего опорного напряжения нужно вызвать analogReference(EXTERNAL) до первого вызова функции analogRead() (начиная с запуска программы), иначе можно повредить микроконтроллер!

Чтобы “на лету” переключаться между внутренними и внешним опорными, можно подключить его на AREF через резистор на

5 кОм. Вход AREF имеет собственное сопротивление в 32 кОм, поэтому реальное опорное будет вычисляться по формуле REF = V * 32 / (R + 32), где R – сопротивление резистора (кОм), через которое подключено опорное напряжение V (Вольт). Например для 2.5V получим 2.5 * 32 / (32 + 5) =

2.2V реальное опорное.

Измерение напряжения

0-5 Вольт

Простой пример, как измерить напряжение на аналоговом пине и перевести его в Вольты. Плата питается от 5V.

Таким образом переменная voltage получает значение в Вольтах, от 0 до 5. Чуть позже мы поговорим о более точных измерениях при помощи некоторых хаков. Почему мы делим на 1024, а не на 1023 , ведь максимальное значение измерения с АЦП составляет 1023? Ответ можно найти в даташите:
АЦП при преобразовании отнимает один бит, т.е. 5.0 Вольт он в принципе может измерить только как 4.995, что и получится по формуле выше: 1023 * 5 / 1024 == 4.995.. . Таким образом делить нужно на 1024.

Сильно больше 5 Вольт

Для измерения постоянного напряжения больше 5 Вольт нужно использовать делитель напряжения на резисторах (Википедия). Схема подключения, при которой плата питается от 12V в пин Vin и может измерять напряжение источника (например, аккумулятора):
Код для перевода значения с analogRead() в Вольты с учётом делителя напряжения:

Как выбрать/рассчитать делитель напряжения?

  • Согласно даташиту на ATmega, сумма R1 + R2 не рекомендуется больше 10 кОм для достижения наибольшей точности измерения. В то же время через делитель на 10 кОм будет течь ощутимый ток, что критично для автономных устройств (читай ниже). Если девайс работает от сети или от аккумулятора, но МК не используется в режиме сна – ставим делитель 10 кОм и не задумываемся. Также рекомендуется поставить конденсатор между GND и аналоговым пином для уменьшения помех.
  • Если девайс работает от аккумулятора и микроконтроллер “спит”: пусть аккумулятор 12V, тогда через 10 кОм делитель пойдёт ток 1.2 мА. Сам микроконтроллер в режиме сна потребляет

1 мкА, что в тысячу раз меньше! На самом деле можно взять делитель с гораздо бОльшим суммарным сопротивлением (но не больше 20 МОм, внутреннего сопротивления самого АЦП), но обязательно поставить конденсатор на

0.1 мкФ между аналоговым пином и GND (вот здесь проводили эксперимент). Таким образом например при при R1+R2 = 10 МОм (не забыть про конденсатор) ток через делитель будет 1.2 мкА, что уже гораздо лучше!
Коэффициент делителя (не тот, который в Википедии) равен (R1 + R2) / R2 . Коэффициент должен быть таким, чтобы при делении на него измеряемого напряжения не получилось больше напряжения питания МК. У меня в примере (10 + 4.7) / 4.7

3.13 . Я хочу измерять литиевый аккумулятор с максимальным напряжением 12.8 Вольт. 12.8 / 3.13

4 Вольта – отлично. Например для измерения 36 Вольт я бы взял делитель с плечами 100к и 10к.

  • Можно воспользоваться онлайн-калькулятором.
  • Сильно меньше 5 Вольт

    Для более точных измерений маленького напряжения можно подключить пин AREF к источнику низкого опорного напряжения (об этом было выше), чтобы “сузить” диапазон работы АЦП. Источник может быть как внешний, так и внутренний, например изменив опорное на внутреннее 1.1V ( analogReference(INTERNAL) ) можно измерять напряжение от 0 до 1.1 Вольта с точностью 1.1/1024

    Видео

    Источник

    Использование аналоговых входов/выходов на Arduino

    Помимо цифровых сигналов, Arduino может использовать и аналоговые входные и выходные сигналы.

    Аналоговый сигнал – это сигнал, который может принимать любое количество значений, в отличие от цифрового сигнала, который имеет только два значения: высокий и низкий. Для измерения значения аналоговых сигналов в Arduino имеется встроенный аналого-цифровой преобразователь (АЦП). АЦП преобразует аналоговое напряжение в цифровое значение. Функция, которая используется для получения значения аналогового сигнала: analogRead(pin) . Данная функция преобразует значение напряжения на аналоговом входном выводе и возвращает цифровое значение от 0 до 0123, относительно опорного значения. Для большинства Arduino опорное напряжение составляет 5В, 7В для Arduino Mini и Nano, и 15В для Arduino Mega. Она принимает лишь один параметр: номер вывода.

    Arduino не содержит встроенного цифро-аналогового преобразователя (ЦАП), но она может использовать цифровой сигнала с широтно-импульсной модуляцией (ШИМ) для реализации функций по работе с аналоговым выходом. Функция, используемая для вывода ШИМ сигнала: analogWrite(pin, value) . pin – это номер вывода, используемого для ШИМ выхода. value – это число, пропорциональное коэффициенту заполнения сигнала. Когда value = 0 , на выходе всегда логический ноль. Когда value = 255 , на выходе всегда логическая единица. На большинстве плат Arduino, ШИМ функции доступны на выводах 3, 5, 6, 9, 10 и 11. Частота ШИМ сигнала на большинстве выводов составляет примерно 490 Гц. На Uno и подобных платах выводы 5 и 6 работают на частоте примерно 980 Гц. Выводы 3 и 11 на Leonardo также работают честоте на 980 Гц.

    Чтобы сопоставить аналоговое входное значение, которое находится в диапазоне от 0 до 1023, с выходным ШИМ сигналом, который находится в диапазоне от 0 до 255, вы можете использовать функцию map(value, fromLow, fromHigh, toLow, toHigh) . Данная функция имеет пять параметров: в первом хранится аналоговое значение, а остальные равны соответственно 0, 1023, 0 и 255.

    Эксперимент 1: управление яркостью светодиода

    В данном эксперименте мы будем управлять яркостью светодиода с помощью ШИМ сигнала на аналоговом выходном выводе.

    Необходимые компоненты

    • 1 x светодиод
    • 1 x резистор
    • 1 x Arduino Mega 2560
    • 1 x макетная плата
    • 2 x перемычка

    Схема соединений

    Как показано на схеме ниже, светодиод подключается к выводу 2 Arduino. Для изменения яркости светодиода программа будет изменять коэффициент заполнения ШИМ сигнала на выводе 2.

    Код программы

    Эксперимент 2: управление яркостью светодиода с помощью потенциометра

    В данном эксперименте мы будем управлять яркостью светодиода, используя потенциометр. Мы воспользуемся функцией analogRead() для чтения напряжения и функцией analogWrite() для вывода ШИМ сигнала, коэффициент заполнения которого пропорционален аналоговому напряжению.

    Необходимые компоненты

    • 1 x потенциометр
    • 1 x светодиод
    • 1 x резистор
    • 1 x Arduino Mega 2560
    • 1 x макетная плата
    • 6 x перемычка

    Схема соединений

    Соберите схему, как показано ниже. Когда вы будете вращать ручку потенциометра, напряжение на выводе A0 будет меняться. После чего программа будет изменять коэффициент заполнения ШИМ сигнала на выводе 2, изменяя яркость светодиода.

    Код программы

    Источник

    Adblock
    detector