Еще раз о передатчиках и приемниках 433 МГц
Простейший комплект из приемника и передатчика ISM-диапазона 433 МГц завоевал заслуженную популярность в среде любителей электроники. Комплекты дешевы (даже в «Чипе-Дипе» их можно купить рублей за 300, а на Ali, говорят, вообще за полтинник), просты и надежны. Кроме того (о чем вы, возможно, не подозреваете), это самый дальнодействующий и проникающий способ беспроводного обмена данными — сигнал на частоте 433 МГц куда лучше проходит через препятствия и действует на более далеком расстоянии, чем в популярном диапазоне 2,4 ГГц (433 МГц полностью задерживаются стенкой в полметра бетона, а Wi-Fi умирает уже на 10 сантиметрах). Допускаю, что недавно появившиеся модули MBee-868, будучи снабженными соответствующей (направленной) антенной, «стреляют» дальше, но они как минимум на порядок дороже, сложнее в подключении, требуют управления энергосбережением и предварительной настройки. И вдобавок частота 868 МГц вдвое хуже проходит через препятствия (хотя, конечно, несравненно лучше частоты 2,4 ГГц).
О приемниках-передатчиках 433 МГц написано очень много (в том числе и на хабре, конечно). Однако, правильно включать в схему этот комплект по какой-то странной причине, кажется, не умеет никто. Когда я в который раз прочел вот тут, что комплект «принимал на 8-ми метрах в пределах прямой видимости, 9-ый метр осилить не удалось», мое терпение лопнуло. Какие еще 8 метров?! В 40-50 я бы поверил, хотя в реальности, наверное, дальность еще больше.
Стоит заметить, что я далее решаю задачу создания линии для передачи произвольных данных, а не просто управления какими-нибудь умными розетками или мотором модели катера. Моя задача сложнее, но все-таки расстояние надежной работы у меня оказывается гораздо больше. Причем в такой задаче важно не только и не столько расстояние в пределах прямой видимости (оно может служить только для сравнения), сколько способность проникать через различные препятствия.
У меня такой комплект работает за городом на расстоянии примерно 25-30 метров под острым углом к бревенчатой стенке, так, что на пути сигнала оказывается примерно метр (в сумме) стен и перегородок, причем частично экранированных фольгированным утеплителем. На гораздо меньшем расстоянии, почти прямо за стенкой, WiFi уже полностью теряет сигнал. В городе сигнал добивает от одного конца трехкомнатной городской квартиры к другому через две межкомнатные перегородки, а также с балкона, где по прямой линии между передатчиком и приемником не менее 80 сантиметров кирпичной кладки и гипсолитовая перегородка. Никаких более дорогих вариантов комплектов, упомянутых в приведенном обзоре, я не употреблял.
Дополнительный плюс комплекта в том, что в паузах передатчик не потребляет ничего, причем без всяких специальных режимов Sleep, просто по принципу своего устройства (ток потребления в покое сравним с токами коллекторной утечки запертого транзистора, то есть порядка 100 нА).
Давайте разберемся, в чем тут подводные камни.
Подключение передатчика
Передатчик (он носит название FS1000A), как мы видим из его схемы ниже, представляет собой простейший генератор на основе ПАВ-резонатора на 433 МГц. Генератор собран на транзисторе Q1, а транзистор Q2, на базу которого подаются цифровые данные — просто ключ, который подключает генератор к питанию (к шине GND) при наличии высокого уровня (логической единицы) на входе. Питание может быть от 5 до 12 вольт, причем, по утверждению производителей, чем выше питание, тем дальше работает связь.
Принципиальных преимуществ увеличенного питания в рамках своей задачи я не заметил. Тем не менее, не следует пренебрегать фактом, что особых требований к питанию тут не предъявляется, и при повышенном напряжении девайс будет работать только лучше. Удобно подключать передатчик непосредственно к напряжению с адаптера 9-12 вольт, аккумулятора или комплекта из 6 батареек (контакт Vin Arduino). При нестабилизированном питании, которое может превышать 12 вольт (как, например, у аккумуляторов) я обычно развязываю передатчик от основной схемы отдельным 9-вольтовым стабилизатором (можно простейшим 78L09), причем разницы в работе между питанием 9 и 12 вольт я не наблюдаю никакой. У Uno или Nano можно для питания самого контроллера и остальных схем (например, датчиков) при этом использовать встроенный стабилизатор 5 вольт, а для Mini (особенно — его дешевых клонов) я бы посоветовал поставить отдельный 5-вольтовый стабилизатор, подключив его к выводу 5V.
Следует отметить, что в последнее время стали появляться передатчики, выглядящие несколько нестандартно (см. рис. ниже). Оказалось, что отсутствие дросселя L1 (трехвиткового), от которого остались только отверстия — фикция, он просто заменен на соответствующий SMD-компонент. Хуже в этом варианте другое: неряшливая полиграфия может ввести в заблуждение относительно подключения выводов данных и питания. Правильное подключение показано на рисунке, оно для всех вариантов одинаково:
Самое поразительное в этом деле — то, что при перепутанном подключении данных и питания передатчик на небольших расстояниях продолжает работать! Если вы рассмотрите схему, то поймете в чем дело: база Q2 через резистор при этом оказывается подключенной к питанию, транзистор всегда открыт, и влияния на работу схемы не оказывает. А логический высокий уровень на шине питания просто запитывает в нужный момент генератор. Несуразности начинаются на некотором расстоянии — понятно, что из логического вывода источник питания получается плохой.
Подключение приемника
При приобретении приемника (он может носить название вроде MX-RM-5V или XD-RF-5V) обращайте внимание на длину выводов — мне как-то попалась целая партия с укороченными штырьками, отчего из стандартного разъема PBS приемник вываливался при малейшем перекосе и его приходилось к плате специально крепить.
У приемника схема гораздо сложнее (я ее не буду воспроизводить, но можете ознакомиться, например, тут). Она должна принять и усилить высокочастотный сигнал, отфильтровать частоту 433 МГц, выделить всплески и преобразовать их в логические уровни. Приемник имеет подстроечный дроссель (посередине платы), но без точных приборов для измерения амплитудно-частотной характеристики я его крутить не советую — скорее всего, вы ничего не улучшите, а только испортите.
Так как уже на небольшом расстоянии сигнал будет гораздо меньше помехи, понятно, что мы с помехами должны бороться по всем фронтам: и схемотехническими и программными методами. Последнее за нас делают библиотеки, но какая бы математика не применялась в программной обработке, желательно сначала сделать все для того, чтобы логическая единица на выходе появлялась только при всплеске полезного сигнала и не появлялась при наличии помехи. Иными словами, классно было бы от помех при приеме отстроиться заранее по максимуму.
Стандартный метод снижения помех, известный в мои времена каждому школьнику, собравшему хоть один радиоприемник или усилитель, заключается в том, что для чувствительных к помехам узлов необходимо делать отдельное питание, по максимуму изолированное от остальных схем. Можно его делать разными методами: когда-то ставили отдельный стабилитрон, сейчас часто изолируют питание проблемного узла LC-фильтром (так рекомендуется поступать, например, для АЦП, посмотрите даташиты на AVR-контроллеры). Но в наших условиях, когда современные компоненты невелики и дешевы, проще просто поставить на приемник отдельный от всего остального стабилизатор.
Стабилизатор, например, типа LP2950-5.0 плюс два необходимых конденсатора к нему в самом дешевом варианте (когда оба конденсатора — керамические, в диапазоне 1–3,3 мкФ) добавит к стоимости вашей схемы рублей шестьдесят максимум. Но я предпочитаю не экономить: на выходе ставлю обычный керамический, а на входе электролит (10–100 мкФ), причем твердотельный (полимерный) или танталовый. Обойтись керамическими конденсаторами и там и там можно, если входное напряжение 7-12 вольт поступает с батареек-аккумуляторов или с другого аналогового стабилизатора. Импульсные стабилизированные источники и простейшие нестабилизированные выпрямители требуют дополнительной фильтрации. Можно использовать дешевый алюминиевый электролит, если ставить параллельно ему керамический 0,1 мкФ, еще лучше поставить на входе последовательную индуктивность в несколько долей или единиц миллигенри.
Стабилизатор следует устанавливать прямо около приемника, длина проводников должна быть минимальна. Вместо LP2950 можно взять LM2931 или аналогичный с маленьким проходным напряжением (это особенно важно, если схема питается от батареек — для обычного LM78L05 входное напряжение должно быть не менее 7,5, а лучше 8-9 вольт).
Сравнив со случаем питания приемника непосредственно от Arduino, как рекомендуется во всех публикациях (исключений я не встречал), вы поразитесь полученному эффекту — дальность и способность проникать через стенки сразу увеличивается в разы. Приемник вместе со стабилизатором для удобства можно вынести в отдельную маленькую коробочку. Связать его выход с контроллером в основном корпусе можно любым трехжильным проводом (два питания и сигнальный проводник) длиной до 3 метров, а может быть и больше. Удобнее это потому, что еще нужны антенны, и по правилам будет лучше, если они будут параллельны друг другу в пространстве, а большие корпуса не всегда удается разместить так, чтобы антенны торчали в нужной ориентации.
В простейшем варианте в качестве антенн можно обойтись обрезками одножильного провода сечением не меньше 0,5 мм и длиной 17 см ± 1-3 мм. Не следует употреблять многожильный монтажный провод! В продаже имеются более компактные спиральные антенны, но я лично их эффективность не испытывал. Кончик антенны и у передатчика и у приемника запаивается в соответствующее отверстие в углу платы (не ошибитесь в модернизированном варианте передатчика — там слово ANT тоже не на месте, см. рис. выше).
Формирование и обработка передаваемых данных
Это второй крупный недостаток большинства обзоров по нашей теме: авторы ограничиваются какой-то локальной задачей, не формулируя ее в общем виде, как передачу произвольных данных одним пакетом. Как вы поняли из описания выше, передаваться нашим комплектом может только простая последовательность бит. Стандартная библиотека VirtualWire кодирует их специальным образом (каждая тетрада кодируется 6-ю битами, впереди добавляется синхронизирующий заголовок, и еще добавляется контрольная сумма для всего пакета) и на выходе превращает в более привычную последовательность байт. Но разбираться с ней уже приходится программисту самостоятельно.
Далее мы считаем, что передатчик и приемник подключены к Arduino. Кроме VirtualWire, в связи с бумом «умных домов», есть еще много всякого подобного, вроде RC-Switch или RemoteSwitch, но они ориентированы на другие задачи, и для передачи произвольных данных их употреблять явно не стоит.
Максимальная длина одного сообщения в VirtualWire равна 27 байт (см. документацию). Передача одного полного сообщения (оно автоматически дополняется сигнатурой 0xb38, значением длины сообщения и контрольной суммой) при выбранной мной скорости 1200 бит/с составляет 0,35 секунды.
Чем больше, кстати, выбранная скорость передачи, тем дальность передачи будет меньше. По опыту применения RS-232 известно, что при увеличении дальности допустимая скорость передачи экспоненциально падает: на скорости 19200 неэкранированная линия работает на 15 метров, на 9600 — 150 метров, а на скорости 1200 — более километра. Интересно было бы экспериментально выяснить характер этой зависимости для нашего случая, ведь очень много здесь зависит и от применяемой математики.
Инициализация передатчика в VirtualWire выглядит так:
Разберем принципы формирования данных на конкретном примере. Пусть у нас имеется выносной датчик температуры-влажности. Он выдает значения (переменные temperature и humidity) в формате действительного числа со знаком (float). Чтобы было проще разбираться на приемном конце, будем все приводить к виду положительного целого числа с числом десятичных разрядов не менее 4, переводить разряды по отдельности в ASCII-символы, передавать получившуюся строку, а на приемном конце выполнять обратные операции. Конечно, можно упростить задачу (например, обойтись без преобразования в ASCII и укоротить числа), но в таком виде она получается единообразной для почти любых разновидностей цифровых данных, что упрощает разборку при приеме.
На практике для формирования сообщения удобно воспользоваться типом String, примерно так:
Если требуется передавать более точные числа с большим количеством разрядов, то вы просто увеличиваете длину массива msg. Глобальные «волатильные» переменные tmpr и hum нужны в случае, если вы осредняете несколько показаний, в противном случае они тоже могут быть объявлены локальными внутри функции loop(). Сообщение, как видите, состоит из значений преобразованных температуры и влажности, в ASCII-строках по четыре байта каждое, предваряемых строкой из трех символов «DAH» (символы могут быть любыми другими из таблицы ASCII). Это сигнатура, которая позволит выделить данное сообщение из числа возможных других, посылаемых аналогичными устройствами. Не пренебрегайте сигнатурой, даже если вы полагаете, что других устройств поблизости в этом диапазоне не предвидится, заодно она служит дополнительной гарантией целостности принимаемых данных.
Заметьте также, что при преобразовании строки в массив необходимо указать на один символ больше, чем суммарная длина сообщения (3+4+4=11), это учитывается нулевой символ, замыкающий строку. А величина массива msg[] должна быть указана с запасом и может быть любой, в данном случае от 13 до 27 байт. При передаче все равно отправится ровно столько, сколько вернет функция strlen(msg), то есть 11 байт + нулевой символ.
В приемной части полученный массив ASCII-кодов придется разбирать (парсить). Но сначала нужно его принять. Для инициализации приема выполняются следующие действия:
Собственно прием с разборкой строки такой:
Надеюсь, у вас теперь будет меньше вопросов по применению этих дешевых и удобных в применении устройств.
Arduino MKR Vidor 4000: распиновка, схема подключения и программирование
Используйте платформу Arduino MKR Vidor 4000 для создания проектов IoT и умного дома. Плата может одновременно опрашивать различные датчики, передавать данные по беспроводным технологиям и выводить изображение с камер видеонаблюдения.
На управляющей плате стучит сразу три сердца:
Подключение и настройка
Примеры работы
Рассмотрим несколько примеров программирования MKR Vidor 4000 на C++ через Arduino IDE.
Маячок
Для начала мигнём встроенным светодиодом на 32 пине микроконтроллера ATSAMD21G18. В текущем примере задействуем только один чип платы MKR Vidor 4000 — микроконтроллер ATSAMD21G18.
Код для Arduino
После прошивки скетча светодиод начнёт мигать раз в секунду.
Маячок RGB
Встроенный светодиод имеет три кристалла:
В продолжении будем по очереди мигать каждым цветом. В текущем примере уже задействуем второй чип платы MKR Vidor 4000 — NINA-W102.
Код для Arduino
После прошивки скетча светодиод начнёт мигать по очереди красным, зелёным и синим цветом.
Вывод лого на HDMI-дисплей
Пришло время опробовать изюминку данной платформы, третий чип MKR Vidor 4000 — ПЛИС (FPGA) Intel Cyclone 10CL016. На самом деле чип уже прошит официальной прошивкой производителя, а нам даются готовые функции для демонстрации работы. В качестве примера выведем лого на HDMI-дисплей.
Что понадобится
Схема устройства
Код для Arduino
После прошивки на HDMI-мониторе отобразится приветственное лого.
Захват изображения с камеры на HDMI-дисплей
Что понадобится
Схема устройства
Код для Arduino
После прошивки изображение с камеры начнёт транслироваться на HDMI-монитор.
Бегущая строка WS2812
Что понадобится
Схема устройства
Код для Arduino
После прошивки на матрице WS2812 побежит радужная строка с надписью «Амперка».
Если строка «бежит» в неверном направлении, необходимо сделать фикс в библиотеке Vidor_GFX.
Смена направления бегущей строки
Элементы платы
Микроконтроллер ATSAMD21G18
На плате MKR Vidor 4000 расположен микроконтроллер ATSAMD21G18 c вычислительном ядром ARM Cortex® M0 с тактовой частотой 48 МГц. Контроллер обладает двумя видами памяти:
ПЛИС (FPGA) Cyclone 10LP
Изюминкой на плате выступает ПЛИС/FPGA (программируемая логическая интегральная схема) — Intel Cyclone 10CL016 с тактовой частотой до 200 МГц. Чип содержит:
Для штатной работы ПЛИС на плате распаяны дополнительный чипы памяти:
ПЛИС используются там, где софтверных возможностей микроконтроллера недостаточно. Например, для реализации аппаратных интерфейсов UART, QSPI, I²C, I²S, захвата с MIPI-камеры и транслирования видео через HDMI.
По умолчанию на плате MKR Vidor 4000 чип Cyclone 10LP прошит штатной прошивкой, функции которой доступны через микроконтроллер микроконтроллер ATSAMD21G18 и библиотеки Vidor Libraries.
MKR Vidor 4000 задумывался как удобная отправная точка для вашего первого путешествия в мир программируемых логических интегральных схем. Однако если вы уже общались с ПЛИС и не боитесь трудностей, можете воспользоваться программой Intel Quartus для создания своих произвольные аппаратных блоков.
Беспроводной модуль NINA-W102
За беспроводную передачу данных отвечает чип U-blox NINA-W102 со встроенным чипом ESP32 для обмена данными по воздуху в диапазоне 2,4 ГГц по Wi-Fi и Bluetooth. Для работы с модулем используйте библиотеку WiFiNINA.
Библиотека WiFiNINA работает с платой MKR Vidor 4000 до версии 1.8.5 включительно. Более поздние релизы пока не поддерживаются платформой. Будьте внимательны при установке библиотеки.
Крипточип ATECC508A
Криптографический сопроцессор Microchip ATECC508A интегрирует протокол безопасности ECDH (Elliptic Curve Diffie Hellman) в сверхзащищённый метод, обеспечивающий согласование ключей для шифрования / дешифрования, наряду с ECDSA (алгоритм цифровой подписи эллиптической кривой) для проверки подлинности с подписью для Интернета вещей (IoT), включая домашнюю автоматизацию, промышленные сети, медицинские услуги, аутентификацию аксессуаров и расходных материалов.
Порт micro-USB
Разъём USB Micro предназначен для прошивки и питания платформы. Для подключения к ПК понадобится кабель USB (A — Micro USB).
Кнопка сброса
Кнопка предназначена для ручного сброса прошивки — аналог кнопки RESET обычного компьютера.
Светодиодная индикация
Имя светодиода | Назначение |
---|---|
ON | Индикатор питания платформы. При питании платформы от аккумулятора через не горит для экономии ёмкости батареи. |
RGB | Пользовательский RGB-светодиод с общим анодом. Катод красного цвета выведен на 32 пин микроконтроллера ATSAMD21G18. Катод зелёного цвета выведен на пин 26 беспроводного модуля NINA-W102. Катод синего цвета выведен на пин 25 беспроводного модуля NINA-W102. При задании значения низкого уровня светодиоды включаются, при высоком — выключаются. Для управления зелёным и синим цветом в Arduino IDE используйте библиотеку WiFiNINA. |
Порт micro-HDMI
Порт micro-HDMI предназначен для подключения HDMI-дисплеев к плате Vidor 4000. Для коммуникации понадобится кабель HDMI — Micro-HDMI.
Разъём MIPI-камеры
Разъём MIPI предназначен для подключения MIPI-камер на сенсоре OmniVision OV5647 к плате Vidor 4000, например Raspberry Pi Camera (Model D).
Понижающий преобразователь EZ6301QI
Комбинированный понижающий преобразователь напряжения EZ6301QI содержит в себе три отдельных модуля:
В итоге одного преобразователя EZ6301QI достаточно для питания всей логики MKR Vidor 4000.
Разъём аккумулятора
На плате расположен JST PH-разъём (2 pin) для подключения внешних литий-полимерных (Li-Pol) и литий-ионных (Li-Ion) аккумуляторов. При питании через разъём для аккумулятора светодиодный индикатор Power не горит для экономии расхода энергии.
Контроллер заряда BQ24195L
За состояние батареи отвечает умный контроллер BQ24195L, который:
Разъём I²C интерфейса
На плате предусмотрен JST SH-разъём (5 pin) для подключения дополнительных модулей по интерфейсу I²C с распиновкой:
Имя контакта | Назначение |
---|---|
5V | Питание модуля (+) |
GND | Питание модуля (−) |
SDA | Пин данных шины I²C |
SCL | Пин тактирования шины I²C |
7 | Пин ввода-вывода |
Распиновка
Пины питания
Пина ввода/вывода
В отличие от большинства плат Arduino, родным напряжением MKR Vidor 4000 является 3,3 В, а не 5 В. Выходы для логической единицы выдают 3,3 В, а в режиме входа ожидают принимать не более 3,3 В. Более высокое напряжение может повредить микроконтроллер!